打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表

来自Googology Wiki

本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义。

需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF 等) BMS / Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linear Array Ordinal[1] ωω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0)=ε0=ψ(Ω) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0)=ζ0=ψ(Ω2) BMS(0,0)(1,1)(2,1)
LCO Large Cantor Ordinal φ(3,0)=η0=ψ(Ω3) BMS(0,0)(1,1)(2,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0)=ψ(Ωω) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schütte Ordinal φ(1,0,0)=Γ0=ψ(ΩΩ) BMS(0,0)(1,1)(2,1)(3,1)
ACO Ackermann Ordinal φ(1,0,0,0)=ψ(ΩΩ2) BMS(0,0)(1,1)(2,1)(3,1)(3,1)
SVO Small Veblen Ordinal ψ(ΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(ΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
BHO Bachmann-Howard Ordinal ψ(Ω2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ωω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ωω+1) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(ΩΩ) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(ΩI+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(Iω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0))=ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
TBO Transfinitary Buchholz's Ordinal ψ(I(1,0,0))=ψ(MM) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)
SRO Small Rathjen Ordinal ψ(εM+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
SMO Small Mahlo Ordinal ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)
SNO Small 1-Mahlo (N) Ordinal ψ(Nω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)
RO Rathjen's Ordinal ψ(εK+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SKO Small Weakly Compact (K) Ordinal ψ(Kω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)
DO Duchhart's Ordinal ψ(2 aft 4) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)
SSO Small Stegert Ordinal ψ(psd.Πω)=ψ(a2) BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)Π0)=ψ(a2a) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
APO Admissible-parameter free effective cardinal Ordinal ψ(λα.(Ωα+1)Π1)=ψ(a2Ωa+1+ψa2(a2Ωa+1)×ω) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)
BGO TSS 1st Back Gear Ordinal (CN ggg)[3] ψ(λα.(Ωα+2)Π1)=ψ(Ωa2+1+ψa2(Ωa2+1)×ω) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)Π0=ψ(Ωa2+1×ω) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(ψIα+1(0))Π0)=ψ(Ωa2+1×a2) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
DSO Doubly +1 Stable Ordinal ψ(λα.(λβ.β+1Π0)Π0=ψ(a3) BMS(0,0,0)(1,1,1)(2,2,1)(3,3,0)
TSO Triply +1 Stable Ordinal ψ(λα.(λβ.(λγ.γ+1Π0)Π0)Π0=ψ(a4) BMS(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)
pfec LRO pfec Large Rathjen Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
SBO Small Bashicu Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
pfec M2O pfec min Σ2 Ordinal ψ(pfec.min(aΣ1bΣ2c)) BMS(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)
LRO Large Rathjen Ordinal Fω1CK,θ=ω BMS(0)(1,1,1,1)?
TSSO / SSPO Trio Sequence System Ordinal / Small Simple Projection Ordinal ψ(ωproj.)=ψ(σS×ω)=ψ(Hω) BMS(0)(1,1,1,1)
LSPO Large Simple Projection Ordinal ψ(min α is αproj.)=ψ(σS×S) BMS(0)(1,1,1,1)(2,1,1,1)(3,1)(2)
Q0.5BGO QSS 0.5th Back Gear Ordinal ψ(ψS(σS×S×ω+S2)) BMS(0)(1,1,1,1)(2,2)
Q1BGO QSS 1st Back Gear Ordinal ψ(ψS(σS×S×ω+Sω)) BMS(0)(1,1,1,1)(2,2,2)
ESPO Extend Simple Projection Ordinal ψ(ψS(σS×S×ω2)) BMS(0)(1,1,1,1)(2,2,2,1)
BOBO Big Omega Back Ordinal ψ((ω,0)P)=ψ(ψH(HHω)) BMS(0)(1,1,1,1)(2,2,2,2)
QSSO Quardo Sequence System Ordinal ψ(ψH(HHω)) BMS(0,0,0,0,0)(1,1,1,1,1)
TCAO Trio Comprehension Axiom Ordinal PTO((Π31CA)0) BMS(0)(1,1,1,1,1)
QiSSO Quinto Sequence System Ordinal ψ(ψH(HHHω)) BMS(0)(1,1,1,1,1,1)
SHO / BMO[4] Small Hydra Ordinal / Bashicu Matrix Ordinal ψ(ψH(εH+1))? Y(1,3)=lim(BMS)
βO Beta Universe Ordinal PTO(Z2) Y(1,3)
ΩSSO Ω Sequence System Ordinal ψ(ψH(φ(Ω,H+1)))? Y(1,3,4,2,5,8,10)
LRPO Large Right Projection Ordinal ψ(ψH(φ(H,1)))? Y(1,3,4,2,5,8,10,4,9,14,17,10)
GHO No-Go Hydra Ordinal[5] ψ(ψH(ψT(T2×2)))? Y(1,3,4,3)
DCO Difference Catching Ordinal ψ(ψH(ψT(T2×ψT(T22))))? Y(1,3,5)
SYO Small Yukito Ordinal ωMN(0)(,,,1) lim(1Y)=ωY(1,4)
MHO / ωYO[4] Medium Hydra Ordinal / ω-Y sequence Ordinal ω2MN(0)(;1) lim(ωY)
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1

已弃用序数表

缩写 英文全称 定义 大小 命名者
SMDO Small Multidimensional Ordinal ωω (0)(1)(2) 318`4
SHO Small Hydra Ordinal ε0=ψ(Ω) (0)(1,1) FataliS1024
ESVO Extended Small Veblen Ordinal ψ(ΩΩΩω) (0)(1,1)(2,1)(3,1)(4,1)(5)
ELVO Extended Large Veblen Ordinal ψ(ΩΩΩΩ) (0)(1,1)(2,1)(3,1)(4,1)(5,1)
LDO(旧) Large Dropping Ordinal ψ(λα.(Ωα×2)Π0) (0)(1,1,1)(2,2,1)(3,1)(2)
EDO Extended Dropping Ordinal ψ(λα.ψIα+1(Iα+1)Π0) (0)(1,1,1)(2,2,1)(3,2)
SEIO Small Eveog-Imagined Ordinal Σ1 adm.
MEIO Medium Eveog-Imagined Ordinal Σ2 adm.
LEIO Large Eveog-Imagined Ordinal Σ3 adm.
SOSO Second Order Stable Ordinal ψ(1oΣ2stb.)
EGO Eveog's Ordinal ψ(ψσ(σω)) (0)(1,1,1,1)(2,2,2,1)(3,2,1)(4)
MHO Medium Hydra Ordinal lim(BMS)=lim(0Y) Y(1,3) FataliS1024
LHO Large Hydra Ordinal lim(ωY) ΩY(1,3,12) FataliS1024
ZDO Zeta Differenciating Ordinal FOS911 Θ(ζ0) ΩY(1,3,12)
WYO Omega Y Ordinal lim(ΩY) ΩY(1,ω) 318`4
EYO Extended Y Ordinal bFOS Θ(BHO) bFOS (0)(1)(ω)(ε0)(BHO) 318`4
UCO Upgrade Catching Ordinal sFOS Θ(BHO) bFOS Θ(BO) 318`4
XYO Extreme Y Ordinal bFOS Θ(BO) bFOS (0)(1)(ω)(ε0)(BO) 318`4
DMO Difference Matrix Ordinal sFOS Θ(BO) bFOS Θ(SHO) 318`4
GYO / 😰O Grand Y-Sequence Ordinal / 😰 Ordinal lim(XY) sFOS (0)(1)(ω)(ε0)(SHO) 318`4
LDCO Large Difference Catching Ordinal sFOS Θ(SYO) b2-FOS Θ(ζ1) 318`4
RHO Remaining Hydra Ordinal lim(sFOS) b2-FOS Θ(φ(ω,0)) 318`4
WFO Omega Fundamental Ordinal lim(Weak 2-FOS) b2-FOS Θ(Γ0) 318`4
TMDO Tri-Multidimensional Ordinal s2-FOS Θ(φ(ω,0)) ω2RD 318`4
ERHO Extended Remaining hydra Ordinal lim(b2-FOS) ω2+1RD 318`4
LMDO Large Multidimensional Ordinal lim(ωFOS) ω2RD 318`4
IFO Infintesimal Function Ordinal lim(IFS) ε0RD 318`4
WRO Omega Remaining Ordinal lim(ROS) R ΩY 318`4
SCLO Small Code Lift Ordinal sup(ncode)
EHO Huge Hydra Ordinal lim(pfffz) 夏夜星空
ROO Remaining Omega Ordinal Rω remaining 318`4
UHO Ultimate Hydra Ordinal lim(RSAM) 夏夜星空
IHO Infinite Hydra Ordinal lim(SAM) 夏夜星空

本表取自 Worldly Sheet

- (SCO/CO/LCO/HCO)谁起不重要,重要的是这是纪念康托尔的,如果没有他所有gggist今天(甚至永远)都走不到一起”

- 你们怎么把它弄成这样了,至少必要的(比如lim fffz/lim X-Y还是要的吧)

- fffz和X-Y公认理想之前搞这么多名字有什么用

- 不然MHO以上全都写成n-RD?- 不对 - 3184为什么要保留他造了那么多没用的序数缩写的黑历史?(bushi) - 不如还是加上 毕竟fatalis的SHO/MHO/LHO都有了

DNAO

DNAO(Disgusting Nonsense Annoyance Ordinal)

定义:

(0)(1,1,1)(2,2,2)(3,3,3)(3,3,0)(4,4,1)(5,5,2)(6,6,2)(7,7,0)(8,8,1)(9,9,2)(10,9,2)(11,9,0)(12,10,1)(13,11,2)(13,11,2)(13,11,1)(14,12,2)(14,11,1)(15,12,2)(15,11,1)(16,12,0)(17,13,1)(18,14,2)(18,14,2)(18,14,1)(19,15,2)(19,14,1)(20,15,2)(20,14,1)(21,15,0)(22,16,1)(23,17,2)(23,17,2)(23,17,1)(24,18,2)(24,17,1)(25,18,2)(25,17,0)(26,18,1)(27,19,2)(27,19,2)(27,19,1)(28,20,2)(28,19,1)(29,20,2)(29,19,0)(30,20,1)(31,21,2)(31,21,2)(31,21,1)(32,22,2)(32,21,1)(33,22,2)(33,21,0)(34,22,1)(35,23,2)(35,23,2)(35,23,1)(36,24,2)(36,23,1)(37,24,2)(37,23,0)(38,24,1)(39,25,2)(40,25,2)(40,25,1)(41,26,2)(41,22,1)(42,23,2)(42,23,2)(42,23,1)(43,24,2)(43,23,1)(44,24,2)(44,23,0)(45,24,1)(46,25,2)(47,25,2)(47,25,1)(48,26,1)(49,27,0)(50,28,1)(51,29,2)(52,29,2)(52,29,1)(53,30,0)(54,31,1)(55,32,2)(56,32,2)(56,32,0)(57,33,1)(58,34,2)(59,34,2)(59,34,0)(60,35,1)(61,36,2)(62,36,2)(62,36,0)(63,37,1)(64,38,2)(65,38,2)(65,38,0)(66,39,1)(67,40,2)(68,40,2)(68,40,0)(69,41,1)(70,42,2)(71,42,2)(71,42,0)(72,43,1)(73,44,0)(74,45,1)(75,44,0)(76,45,1)(77,46,0)(78,47,0)(79,44,0)(80,45,1)(81,46,0)(82,47,0)(83,44,0)(84,45,1)(85,46,0)(86,47,0)(87,44,0)(88,45,1)(89,46,0)(90,47,0)(91,44,0)(92,45,1)(93,46,0)(94,47,0)(95,44,0)(96,45,1)(96,45,1)(96,45,1)(96,45,0)(97,46,0)(98,47,0)(99,48,0)(100,47,0)(101,48,0)(102,47,0)(103,48,0)(104,47,0)(105,48,0)(106,47,0)(107,48,0)(108,45,0)(109,46,0)(110,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,46,0)(112,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,46,0)(114,47,0)(115,46,0)(116,47,0)(117,46,0)(118,47,0)(119,46,0)(120,45,0)(121,46,0)(122,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,46,0)(124,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,46,0)(126,47,0)(127,46,0)(128,47,0)(129,46,0)(130,47,0)(131,46,0)(132,45,0)(133,46,0)(134,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,46,0)(136,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,46,0)(138,47,0)(139,46,0)(140,47,0)(141,46,0)(142,47,0)(143,46,0)(144,45,0)(145,46,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(149,45,0)(149,45,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(152,45,0)(152,45,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(150,45,0)(149,45,0)

脚注

  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
  4. 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是ε0,MHO指的是BMS极限。还有一个LHO指ωY极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
  5. 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本