打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表:修订间差异

来自Googology Wiki
Z留言 | 贡献
无编辑摘要
Baixie01000a7留言 | 贡献
修改了拼写错误Linar->Linear
 
(未显示7个用户的26个中间版本)
第1行: 第1行:
本条目列举出一些有名字的[[序数]],它们大多在 googology 中具有重大意义
本条目列举出一些有名字的[[序数]],它们大多在 [[googology]] 中具有重大意义。


需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
== 序数表 ==
 
=== 序数表 ===
{| class="wikitable"
{| class="wikitable"
|+
|-
|-
! 缩写 !! 英文全称 !! 常规表示方法(BOCF等) !! BMS/Y
! 缩写 !! 英文全称 !! 常规表示方法([[序数坍缩函数#BOCF|BOCF]] 等) !! [[BMS]] / [[Y序列|Y]]
|-
|-
| FTO || First Transfinite Ordinal || <math>\omega</math>|| <math>\mathrm{BMS}(0)(1)</math>
| [[FTO]]|| First Transfinite Ordinal || <math>\omega</math>|| <math>\mathrm{BMS}(0)(1)</math>
|-
|-
| LAO || Linar Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| <math>\omega^\omega</math>|| <math>\mathrm{BMS}(0)(1)(2)</math>
| [[LAO]]|| Linear Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| <math>\omega^\omega</math>|| <math>\mathrm{BMS}(0)(1)(2)</math>
|-
|-
| [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)</math>
| [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)</math>
第16行: 第16行:
| [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)</math>
| [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)</math>
|-
|-
|LCO
|[[LCO]]
|Large Cantor Ordinal
|Large Cantor Ordinal
|<math>\varphi(3,0)=\eta_0=\psi(\Omega^3)</math>
|<math>\varphi(3,0)=\eta_0=\psi(\Omega^3)</math>
第23行: 第23行:
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,0)</math>
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,0)</math>
|-
|-
| [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math>
| [[FSO]]|| Feferman-Schütte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math>
|-
|-
|ACO
|[[ACO]]
|Ackermann Ordinal
|Ackermann Ordinal
|<math>\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math>
|<math>\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math>
|<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math>
|<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math>
|-
|-
| [[SVO]]|| Small Veblen Ordinal || <math>\varphi(1</math>@<math>\omega)=\psi(\Omega^{\Omega^{\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math>
| [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^\omega})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math>
|-
| [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)</math>
|-
| [[ESVO]]|| Extended Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega^\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)</math>
|-
|-
| [[ELVO]]|| Extended Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega^{\Omega}}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)(5,1)</math>
| [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^\Omega})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)</math>
|-
|-
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,2)</math>
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,2)</math>
第54行: 第50行:
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math>
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math>
|-
|-
|TBO
|[[TBO]]
|Transfinitary Buchholz's Ordinal
|Transfinitary Buchholz's Ordinal
|<math>\psi(I(1,0,0))=\psi(M^M)</math>
|<math>\psi(I(1,0,0))=\psi(M^M)</math>
第63行: 第59行:
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math>
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math>
|-
|-
|SNO
|[[SNO]]
|Small 1-Mahlo (N) Ordinal
|Small 1-Mahlo (N) Ordinal
|<math>\psi(N_\omega)</math>
|<math>\psi(N_\omega)</math>
第70行: 第66行:
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
|-
|-
|SKO
|[[SKO]]
|Small Weakly Compact (K) Ordinal
|Small Weakly Compact (K) Ordinal
|<math>\psi(K_\omega)</math>
|<math>\psi(K_\omega)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math>
|-
|-
|DO
|[[DO]]
|Duchhart's Ordinal
|Duchhart's Ordinal
|<math>\psi(\Omega(\Pi_4+1))</math>
|<math>\psi(2 \ \rm{aft} \ 4)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math>
|-
|-
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
|-
|BGO
|TSS 1st Back Gear Ordinal
| <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
|-
|-
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
|-
|-
|APO
|[[APO]]
|Admissible-parameter free effective cardinal Ordinal
|Admissible-parameter free effective cardinal Ordinal
|<math>\psi(1-((+)-\Pi_1))=\psi(a_2^{\Omega_{a+1}})</math>
|<math>\psi(\lambda\alpha.(\Omega_{\alpha+1})-\Pi_1)=\psi(a_2^{\Omega_{a+1}}+\psi_{a_2}(a_2^{\Omega_{a+1}})\times\omega)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math>
|-
|-
| [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})=\psi(\Omega_{a_2+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math>
| [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})=\psi(\Omega_{a_2+1}+\psi_{a_2}(\Omega_{a_2+1})\times\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math>
|-
|-
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0}=\psi(\Omega_{a_2+\omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0}=\psi(\Omega_{a_2+1}\times\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
|-
|-
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})=\psi(\Omega_{a_2+1}\times a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(0))-\Pi_{0})=\psi(\Omega_{a_2+1}\times a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
|-
|-
|DSO
|[[DSO]]
|Doubly +1 Stable Ordinal
|Doubly +1 Stable Ordinal
|<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0=\psi(a_3) </math>
|<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0=\psi(a_3) </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math>
|-
|-
|TSO
|[[TSO]]
|Triply +1 Stable Ordinal
|Triply +1 Stable Ordinal
|<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0=\psi(a_4) </math>
|<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0=\psi(a_4) </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math>
|-
|-
| pfec LRO|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
| [[LRO|pfec LRO]]|| pfec Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|-
|-
|SBO
|[[LRO|SBO]]
|Small Bashicu Ordinal
|Small Bashicu Ordinal
| <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>
| <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|-
|-
|pfec M2O
|[[方括号稳定|pfec M2O]]
|pfec min Σ<sub>2</sub> Ordinal
|pfec min Σ<sub>2</sub> Ordinal
|<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math>
|<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math>?
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math>?
|-
|-
|LRO
|[[LRO]]
|Large Rathjen Ordinal
|Large Rathjen Ordinal
|<math>F\cap\omega_1^\text{CK},\theta=\omega </math>
|<math>F\cap\omega_1^\text{CK},\theta=\omega </math>
|<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math>
|<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math>
|-
|-
|SSPO
|[[TSSO]] / SSPO
|Small Simple Projection Ordinal
|Trio Sequence System Ordinal / Small Simple Projection Ordinal
|<math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>
|<math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1)</math>
|-
|-
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0)(1,1,1,1)</math>
|[[LSPO]]
|-
|LSPO
|Large Simple Projection Ordinal
|Large Simple Projection Ordinal
|<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.})=\psi(\sigma S\times S) </math>
|<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.})=\psi(\sigma S\times S) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math>
|-
|-
|EO
|[[Q0.5BGO]]
|Eveog's Ordinal
|QSS 0.5th Back Gear Ordinal
|<math>\psi(\psi_\sigma(\sigma_n)) </math>
|<math>\psi(\psi_S(\sigma S\times S\times \omega+S_2)) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,1,1)(3)</math>
|<math>\rm{BMS}(0)(1,1,1,1)(2,2)</math>
|-
|-
|Q1BGO
|[[Q1BGO]]
|Quadro Sequence System 1st Back Gear Ordinal
|QSS 1st Back Gear Ordinal
| -
| <math>\psi(\psi_S(\sigma S\times S\times \omega+S_\omega)) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math>
|-
|-
|ESPO
|[[ESPO]]
|Extend Simple Projection Ordinal
|Extend Simple Projection Ordinal
| -
| <math>\psi(\psi_S(\sigma S\times S\times \omega^2)) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math>
|-
|-
|BOBO
|[[BOBO]]
|Big Omega Back Ordinal
|Big Omega Back Ordinal
| -
| <math>\psi((\omega,0)-P)=\psi(\psi_{H}(H^{H\omega})) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math>
|-
|-
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math>
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math>
|-
|-
|TCAO
|[[QSSO|TCAO]]
|Trio Comprehension Axiom Ordinal
|Trio Comprehension Axiom Ordinal
|<math>\text{PTO}((\Pi_3^1-CA)_0) </math>
|<math>\text{PTO}((\Pi_3^1-CA)_0) </math>
第168行: 第157行:
|QiSSO
|QiSSO
|Quinto Sequence System Ordinal
|Quinto Sequence System Ordinal
| -
| <math>\psi(\psi_{H}(H^{H^{H^{\omega}}}))</math>
|<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math>
|<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math>
|-
|-
| SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math>
| [[SHO]] / BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal / Bashicu Matrix Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=\lim(\rm BMS)</math>
|-
|-
| [[ΩSSO]]|| \Omega Sequence System Ordinal || || <math>Y(1,3,4,2,5,8,10)</math>
|βO
|Beta Universe Ordinal
|<math>\rm PTO(Z_2)</math>
|<math>\geqslant Y(1,3)</math>
|-
|-
| [[GHO]]|| No-Go Hydra Ordinal<ref>原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本</ref>|| || <math>Y(1,3,4,3)</math>
| [[ΩSSO]]|| Ω Sequence System Ordinal || <math>\psi(\psi_H(\varphi(\Omega,H+1)))?</math>|| <math>Y(1,3,4,2,5,8,10)</math>
|-
|-
| [[SYO]]|| Small Yukito Ordinal || || <math>\omega-Y(1,4)</math>
|[[LRPO]]
|Large Right Projection Ordinal
|<math>\psi(\psi_{H}(\varphi(H,1)))?</math>
|<math>Y(1,3,4,2,5,8,10,4,9,14,17,10)</math>
|-
|-
| MHO/ωYO<ref name=":0" />|| Medium Hydra Ordinal || || <math>\omega-Y</math> 极限
| [[GHO]]|| No-Go Hydra Ordinal<ref>原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本</ref>|| <math>\psi(\psi_H(\psi_T(T_2\times 2)))?</math>|| <math>Y(1,3,4,3)</math>
|-
|[[DCO]]
|Difference Catching Ordinal
|<math>\psi(\psi_H(\psi_T(T_2\times\psi_T(T_2^2))))?</math>
|<math>Y(1,3,5)</math>
|-
| [[SYO]]|| Small Yukito Ordinal || <math>\omega \rm{ MN}(0)(,,,1)</math>|| <math>\lim(1-Y)=\omega-Y(1,4)</math>
|-
| [[MHO]] / ωYO<ref name=":0" />|| Medium Hydra Ordinal / ω-Y sequence Ordinal || <math>\omega \rm{2MN}(0)(;1)</math>|| <math>\lim(\omega-Y)</math>
|-
|-
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{\rm CK}</math>
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{\rm CK}</math>
|-
|-
| [[FUO]] || First Uncountable Ordinal || <math>\omega_{1}</math>||
| [[FUO]]|| First Uncountable Ordinal || <math>\omega_{1}</math>||
|}
|}
=== 已弃用序数表 ===
{| class="wikitable"
!缩写
!英文全称
!定义
!大小
!命名者
|-
|SMDO
|Small Multidimensional Ordinal
|<math>\omega^\omega</math>
|<math>(0)(1)(2)</math>
|318`4
|-
|SHO
|Small Hydra Ordinal
|<math>\varepsilon_0=\psi(\Omega)</math>
|<math>(0)(1,1)</math>
|FataliS1024
|-
|ESVO
|Extended Small Veblen Ordinal
|<math>\psi\left(\Omega^{\Omega^{\Omega^{\omega}}}\right)</math>
|<math>(0)(1,1)(2,1)(3,1)(4,1)(5)</math>
|
|-
|ELVO
|Extended Large Veblen Ordinal
|<math>\psi\left(\Omega^{\Omega^{\Omega^{\Omega}}}\right)</math>
|<math>(0)(1,1)(2,1)(3,1)(4,1)(5,1)</math>
|
|-
|LDO(旧)
|Large Dropping Ordinal
|<math>\psi(\lambda\alpha.(\Omega_{\alpha\times 2})-\Pi_{0})</math>
|<math>(0)(1,1,1)(2,2,1)(3,1)(2)</math>
|
|-
|EDO
|Extended Dropping Ordinal
|<math>\psi(\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1})-\Pi_0)</math>
|<math>(0)(1,1,1)(2,2,1)(3,2)</math>
|
|-
|SEIO
|Small Eveog-Imagined Ordinal
|<math>\Sigma_1\text{ adm.}</math>
|
|
|-
|MEIO
|Medium Eveog-Imagined Ordinal
|<math>\Sigma_2\text{ adm.}</math>
|
|
|-
|LEIO
|Large Eveog-Imagined Ordinal
|<math>\Sigma_3\text{ adm.}</math>
|
|
|-
|SOSO
|Second Order Stable Ordinal
|<math>\psi(1-o-\Sigma_2-\text{stb.})</math>
|
|
|-
|EGO
|Eveog's Ordinal
|<math>\psi(\psi\sigma(\sigma_\omega))</math>
|<math>(0)(1,1,1,1)(2,2,2,1)(3,2,1)(4)</math>
|
|-
|MHO
|Medium Hydra Ordinal
|<math>\lim({\rm BMS})=\lim(0-Y)</math>
|<math>Y(1,3)</math>
|FataliS1024
|-
|LHO
|Large Hydra Ordinal
|<math>\lim(\omega-Y)</math>
|<math>\Omega-Y(1,3,12)</math>
|FataliS1024
|-
|ZDO
|Zeta Differenciating Ordinal
|<math>\text{FOS911 }\Theta(\zeta_0)</math>
|<math>\Omega-Y(1,3,12)</math>
|
|-
|WYO
|Omega Y Ordinal
|<math>\lim(\Omega-Y)</math>
|<math>\Omega-Y(1,\omega)</math>
|318`4
|-
|EYO
|Extended Y Ordinal
|<math>\text{bFOS }\Theta(\text{BHO})</math>
|<math>\text{bFOS }(0)(1)(\omega)(\varepsilon_0)(\text{BHO})</math>
|318`4
|-
|UCO
|Upgrade Catching Ordinal
|<math>\text{sFOS }\Theta(\text{BHO})</math>
|<math>\text{bFOS }\Theta(\text{BO})</math>
|318`4
|-
|XYO
|Extreme Y Ordinal
|<math>\text{bFOS }\Theta(\text{BO})</math>
|<math>\text{bFOS }(0)(1)(\omega)(\varepsilon_0)(\text{BO})</math>
|318`4
|-
|DMO
|Difference Matrix Ordinal
|<math>\text{sFOS }\Theta(\text{BO})</math>
|<math>\text{bFOS }\Theta(\text{SHO})</math>
|318`4
|-
|GYO / 😰O
|Grand Y-Sequence Ordinal / 😰 Ordinal
|<math>\lim(X-Y)</math>
|<math>\text{sFOS }(0)(1)(\omega)(\varepsilon_0)(\text{SHO})</math>
|318`4
|-
|LDCO
|Large Difference Catching Ordinal
|<math>\text{sFOS }\Theta(\text{SYO})</math>
|<math>\text{b2-FOS }\Theta(\zeta_1)</math>
|318`4
|-
|RHO
|Remaining Hydra Ordinal
|<math>\lim(\text{sFOS})</math>
|<math>\text{b2-FOS }\Theta(\varphi(\omega,0))</math>
|318`4
|-
|WFO
|Omega Fundamental Ordinal
|<math>\lim(\text{Weak 2-FOS})</math>
|<math>\text{b2-FOS }\Theta(\Gamma_0)</math>
|318`4
|-
|TMDO
|Tri-Multidimensional Ordinal
|<math>\text{s2-FOS }\Theta(\varphi(\omega,0))</math>
|<math>\omega2-\text{RD}</math>
|318`4
|-
|ERHO
|Extended Remaining hydra Ordinal
|<math>\lim(\text{b2-FOS})</math>
|<math>\omega2+1-\text{RD}</math>
|318`4
|-
|LMDO
|Large Multidimensional Ordinal
|<math>\lim(\omega-\text{FOS})</math>
|<math>\omega^2-\text{RD}</math>
|318`4
|-
|IFO
|Infintesimal Function Ordinal
|<math>\lim(\text{IFS})</math>
|<math>\varepsilon_0-\text{RD}</math>
|318`4
|-
|WRO
|Omega Remaining Ordinal
|<math>\lim(\text{ROS})</math>
|<math>R\ \Omega-Y</math>
|318`4
|-
|SCLO
|Small Code Lift Ordinal
|<math>\sup(n-\text{code})</math>
|
|
|-
|EHO
|Huge Hydra Ordinal
|<math>\lim(\text{pfffz})</math>
|
|夏夜星空
|-
|ROO
|Remaining Omega Ordinal
|<math>R_\omega\text{ remaining}</math>
|
|318`4
|-
|UHO
|Ultimate Hydra Ordinal
|<math>\lim(\text{RSAM})</math>
|
|夏夜星空
|-
|IHO
|Infinite Hydra Ordinal
|<math>\lim(\text{SAM})</math>
|
|夏夜星空
|}
本表取自 [https://docs.qq.com/sheet/DSnFWckliSU5TTE15 Worldly Sheet]:<blockquote>- (SCO/CO/LCO/HCO)谁起不重要,重要的是这是纪念康托尔的,如果没有他所有gggist今天(甚至永远)都走不到一起”
- 你们怎么把它弄成这样了,至少必要的(比如lim fffz/lim X-Y还是要的吧)
- fffz和X-Y公认理想之前搞这么多名字有什么用
- 不然MHO以上全都写成n-RD?- 不对 - 3184为什么要保留他造了那么多没用的序数缩写的黑历史?(bushi) - 不如还是加上 毕竟fatalis的SHO/MHO/LHO都有了</blockquote>
==== DNAO ====
DNAO(Disgusting Nonsense Annoyance Ordinal)
定义:
(0)(1,1,1)(2,2,2)(3,3,3)(3,3,0)(4,4,1)(5,5,2)(6,6,2)(7,7,0)(8,8,1)(9,9,2)(10,9,2)(11,9,0)(12,10,1)(13,11,2)(13,11,2)(13,11,1)(14,12,2)(14,11,1)(15,12,2)(15,11,1)(16,12,0)(17,13,1)(18,14,2)(18,14,2)(18,14,1)(19,15,2)(19,14,1)(20,15,2)(20,14,1)(21,15,0)(22,16,1)(23,17,2)(23,17,2)(23,17,1)(24,18,2)(24,17,1)(25,18,2)(25,17,0)(26,18,1)(27,19,2)(27,19,2)(27,19,1)(28,20,2)(28,19,1)(29,20,2)(29,19,0)(30,20,1)(31,21,2)(31,21,2)(31,21,1)(32,22,2)(32,21,1)(33,22,2)(33,21,0)(34,22,1)(35,23,2)(35,23,2)(35,23,1)(36,24,2)(36,23,1)(37,24,2)(37,23,0)(38,24,1)(39,25,2)(40,25,2)(40,25,1)(41,26,2)(41,22,1)(42,23,2)(42,23,2)(42,23,1)(43,24,2)(43,23,1)(44,24,2)(44,23,0)(45,24,1)(46,25,2)(47,25,2)(47,25,1)(48,26,1)(49,27,0)(50,28,1)(51,29,2)(52,29,2)(52,29,1)(53,30,0)(54,31,1)(55,32,2)(56,32,2)(56,32,0)(57,33,1)(58,34,2)(59,34,2)(59,34,0)(60,35,1)(61,36,2)(62,36,2)(62,36,0)(63,37,1)(64,38,2)(65,38,2)(65,38,0)(66,39,1)(67,40,2)(68,40,2)(68,40,0)(69,41,1)(70,42,2)(71,42,2)(71,42,0)(72,43,1)(73,44,0)(74,45,1)(75,44,0)(76,45,1)(77,46,0)(78,47,0)(79,44,0)(80,45,1)(81,46,0)(82,47,0)(83,44,0)(84,45,1)(85,46,0)(86,47,0)(87,44,0)(88,45,1)(89,46,0)(90,47,0)(91,44,0)(92,45,1)(93,46,0)(94,47,0)(95,44,0)(96,45,1)(96,45,1)(96,45,1)(96,45,0)(97,46,0)(98,47,0)(99,48,0)(100,47,0)(101,48,0)(102,47,0)(103,48,0)(104,47,0)(105,48,0)(106,47,0)(107,48,0)(108,45,0)(109,46,0)(110,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,46,0)(112,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,46,0)(114,47,0)(115,46,0)(116,47,0)(117,46,0)(118,47,0)(119,46,0)(120,45,0)(121,46,0)(122,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,46,0)(124,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,46,0)(126,47,0)(127,46,0)(128,47,0)(129,46,0)(130,47,0)(131,46,0)(132,45,0)(133,46,0)(134,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,46,0)(136,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,46,0)(138,47,0)(139,46,0)(140,47,0)(141,46,0)(142,47,0)(143,46,0)(144,45,0)(145,46,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(149,45,0)(149,45,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(152,45,0)(152,45,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(150,45,0)(149,45,0)
=== 脚注 ===
<references />

2025年9月7日 (日) 15:25的最新版本

本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义。

需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF 等) BMS / Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linear Array Ordinal[1] ωω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0)=ε0=ψ(Ω) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0)=ζ0=ψ(Ω2) BMS(0,0)(1,1)(2,1)
LCO Large Cantor Ordinal φ(3,0)=η0=ψ(Ω3) BMS(0,0)(1,1)(2,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0)=ψ(Ωω) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schütte Ordinal φ(1,0,0)=Γ0=ψ(ΩΩ) BMS(0,0)(1,1)(2,1)(3,1)
ACO Ackermann Ordinal φ(1,0,0,0)=ψ(ΩΩ2) BMS(0,0)(1,1)(2,1)(3,1)(3,1)
SVO Small Veblen Ordinal ψ(ΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(ΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
BHO Bachmann-Howard Ordinal ψ(Ω2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ωω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ωω+1) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(ΩΩ) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(ΩI+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(Iω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0))=ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
TBO Transfinitary Buchholz's Ordinal ψ(I(1,0,0))=ψ(MM) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)
SRO Small Rathjen Ordinal ψ(εM+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
SMO Small Mahlo Ordinal ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)
SNO Small 1-Mahlo (N) Ordinal ψ(Nω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)
RO Rathjen's Ordinal ψ(εK+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SKO Small Weakly Compact (K) Ordinal ψ(Kω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)
DO Duchhart's Ordinal ψ(2 aft 4) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)
SSO Small Stegert Ordinal ψ(psd.Πω)=ψ(a2) BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)Π0)=ψ(a2a) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
APO Admissible-parameter free effective cardinal Ordinal ψ(λα.(Ωα+1)Π1)=ψ(a2Ωa+1+ψa2(a2Ωa+1)×ω) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)
BGO TSS 1st Back Gear Ordinal (CN ggg)[3] ψ(λα.(Ωα+2)Π1)=ψ(Ωa2+1+ψa2(Ωa2+1)×ω) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)Π0=ψ(Ωa2+1×ω) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(ψIα+1(0))Π0)=ψ(Ωa2+1×a2) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
DSO Doubly +1 Stable Ordinal ψ(λα.(λβ.β+1Π0)Π0=ψ(a3) BMS(0,0,0)(1,1,1)(2,2,1)(3,3,0)
TSO Triply +1 Stable Ordinal ψ(λα.(λβ.(λγ.γ+1Π0)Π0)Π0=ψ(a4) BMS(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)
pfec LRO pfec Large Rathjen Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
SBO Small Bashicu Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
pfec M2O pfec min Σ2 Ordinal ψ(pfec.min(aΣ1bΣ2c)) BMS(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)
LRO Large Rathjen Ordinal Fω1CK,θ=ω BMS(0)(1,1,1,1)?
TSSO / SSPO Trio Sequence System Ordinal / Small Simple Projection Ordinal ψ(ωproj.)=ψ(σS×ω)=ψ(Hω) BMS(0)(1,1,1,1)
LSPO Large Simple Projection Ordinal ψ(min α is αproj.)=ψ(σS×S) BMS(0)(1,1,1,1)(2,1,1,1)(3,1)(2)
Q0.5BGO QSS 0.5th Back Gear Ordinal ψ(ψS(σS×S×ω+S2)) BMS(0)(1,1,1,1)(2,2)
Q1BGO QSS 1st Back Gear Ordinal ψ(ψS(σS×S×ω+Sω)) BMS(0)(1,1,1,1)(2,2,2)
ESPO Extend Simple Projection Ordinal ψ(ψS(σS×S×ω2)) BMS(0)(1,1,1,1)(2,2,2,1)
BOBO Big Omega Back Ordinal ψ((ω,0)P)=ψ(ψH(HHω)) BMS(0)(1,1,1,1)(2,2,2,2)
QSSO Quardo Sequence System Ordinal ψ(ψH(HHω)) BMS(0,0,0,0,0)(1,1,1,1,1)
TCAO Trio Comprehension Axiom Ordinal PTO((Π31CA)0) BMS(0)(1,1,1,1,1)
QiSSO Quinto Sequence System Ordinal ψ(ψH(HHHω)) BMS(0)(1,1,1,1,1,1)
SHO / BMO[4] Small Hydra Ordinal / Bashicu Matrix Ordinal ψ(ψH(εH+1))? Y(1,3)=lim(BMS)
βO Beta Universe Ordinal PTO(Z2) Y(1,3)
ΩSSO Ω Sequence System Ordinal ψ(ψH(φ(Ω,H+1)))? Y(1,3,4,2,5,8,10)
LRPO Large Right Projection Ordinal ψ(ψH(φ(H,1)))? Y(1,3,4,2,5,8,10,4,9,14,17,10)
GHO No-Go Hydra Ordinal[5] ψ(ψH(ψT(T2×2)))? Y(1,3,4,3)
DCO Difference Catching Ordinal ψ(ψH(ψT(T2×ψT(T22))))? Y(1,3,5)
SYO Small Yukito Ordinal ωMN(0)(,,,1) lim(1Y)=ωY(1,4)
MHO / ωYO[4] Medium Hydra Ordinal / ω-Y sequence Ordinal ω2MN(0)(;1) lim(ωY)
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1

已弃用序数表

缩写 英文全称 定义 大小 命名者
SMDO Small Multidimensional Ordinal ωω (0)(1)(2) 318`4
SHO Small Hydra Ordinal ε0=ψ(Ω) (0)(1,1) FataliS1024
ESVO Extended Small Veblen Ordinal ψ(ΩΩΩω) (0)(1,1)(2,1)(3,1)(4,1)(5)
ELVO Extended Large Veblen Ordinal ψ(ΩΩΩΩ) (0)(1,1)(2,1)(3,1)(4,1)(5,1)
LDO(旧) Large Dropping Ordinal ψ(λα.(Ωα×2)Π0) (0)(1,1,1)(2,2,1)(3,1)(2)
EDO Extended Dropping Ordinal ψ(λα.ψIα+1(Iα+1)Π0) (0)(1,1,1)(2,2,1)(3,2)
SEIO Small Eveog-Imagined Ordinal Σ1 adm.
MEIO Medium Eveog-Imagined Ordinal Σ2 adm.
LEIO Large Eveog-Imagined Ordinal Σ3 adm.
SOSO Second Order Stable Ordinal ψ(1oΣ2stb.)
EGO Eveog's Ordinal ψ(ψσ(σω)) (0)(1,1,1,1)(2,2,2,1)(3,2,1)(4)
MHO Medium Hydra Ordinal lim(BMS)=lim(0Y) Y(1,3) FataliS1024
LHO Large Hydra Ordinal lim(ωY) ΩY(1,3,12) FataliS1024
ZDO Zeta Differenciating Ordinal FOS911 Θ(ζ0) ΩY(1,3,12)
WYO Omega Y Ordinal lim(ΩY) ΩY(1,ω) 318`4
EYO Extended Y Ordinal bFOS Θ(BHO) bFOS (0)(1)(ω)(ε0)(BHO) 318`4
UCO Upgrade Catching Ordinal sFOS Θ(BHO) bFOS Θ(BO) 318`4
XYO Extreme Y Ordinal bFOS Θ(BO) bFOS (0)(1)(ω)(ε0)(BO) 318`4
DMO Difference Matrix Ordinal sFOS Θ(BO) bFOS Θ(SHO) 318`4
GYO / 😰O Grand Y-Sequence Ordinal / 😰 Ordinal lim(XY) sFOS (0)(1)(ω)(ε0)(SHO) 318`4
LDCO Large Difference Catching Ordinal sFOS Θ(SYO) b2-FOS Θ(ζ1) 318`4
RHO Remaining Hydra Ordinal lim(sFOS) b2-FOS Θ(φ(ω,0)) 318`4
WFO Omega Fundamental Ordinal lim(Weak 2-FOS) b2-FOS Θ(Γ0) 318`4
TMDO Tri-Multidimensional Ordinal s2-FOS Θ(φ(ω,0)) ω2RD 318`4
ERHO Extended Remaining hydra Ordinal lim(b2-FOS) ω2+1RD 318`4
LMDO Large Multidimensional Ordinal lim(ωFOS) ω2RD 318`4
IFO Infintesimal Function Ordinal lim(IFS) ε0RD 318`4
WRO Omega Remaining Ordinal lim(ROS) R ΩY 318`4
SCLO Small Code Lift Ordinal sup(ncode)
EHO Huge Hydra Ordinal lim(pfffz) 夏夜星空
ROO Remaining Omega Ordinal Rω remaining 318`4
UHO Ultimate Hydra Ordinal lim(RSAM) 夏夜星空
IHO Infinite Hydra Ordinal lim(SAM) 夏夜星空

本表取自 Worldly Sheet

- (SCO/CO/LCO/HCO)谁起不重要,重要的是这是纪念康托尔的,如果没有他所有gggist今天(甚至永远)都走不到一起”

- 你们怎么把它弄成这样了,至少必要的(比如lim fffz/lim X-Y还是要的吧)

- fffz和X-Y公认理想之前搞这么多名字有什么用

- 不然MHO以上全都写成n-RD?- 不对 - 3184为什么要保留他造了那么多没用的序数缩写的黑历史?(bushi) - 不如还是加上 毕竟fatalis的SHO/MHO/LHO都有了

DNAO

DNAO(Disgusting Nonsense Annoyance Ordinal)

定义:

(0)(1,1,1)(2,2,2)(3,3,3)(3,3,0)(4,4,1)(5,5,2)(6,6,2)(7,7,0)(8,8,1)(9,9,2)(10,9,2)(11,9,0)(12,10,1)(13,11,2)(13,11,2)(13,11,1)(14,12,2)(14,11,1)(15,12,2)(15,11,1)(16,12,0)(17,13,1)(18,14,2)(18,14,2)(18,14,1)(19,15,2)(19,14,1)(20,15,2)(20,14,1)(21,15,0)(22,16,1)(23,17,2)(23,17,2)(23,17,1)(24,18,2)(24,17,1)(25,18,2)(25,17,0)(26,18,1)(27,19,2)(27,19,2)(27,19,1)(28,20,2)(28,19,1)(29,20,2)(29,19,0)(30,20,1)(31,21,2)(31,21,2)(31,21,1)(32,22,2)(32,21,1)(33,22,2)(33,21,0)(34,22,1)(35,23,2)(35,23,2)(35,23,1)(36,24,2)(36,23,1)(37,24,2)(37,23,0)(38,24,1)(39,25,2)(40,25,2)(40,25,1)(41,26,2)(41,22,1)(42,23,2)(42,23,2)(42,23,1)(43,24,2)(43,23,1)(44,24,2)(44,23,0)(45,24,1)(46,25,2)(47,25,2)(47,25,1)(48,26,1)(49,27,0)(50,28,1)(51,29,2)(52,29,2)(52,29,1)(53,30,0)(54,31,1)(55,32,2)(56,32,2)(56,32,0)(57,33,1)(58,34,2)(59,34,2)(59,34,0)(60,35,1)(61,36,2)(62,36,2)(62,36,0)(63,37,1)(64,38,2)(65,38,2)(65,38,0)(66,39,1)(67,40,2)(68,40,2)(68,40,0)(69,41,1)(70,42,2)(71,42,2)(71,42,0)(72,43,1)(73,44,0)(74,45,1)(75,44,0)(76,45,1)(77,46,0)(78,47,0)(79,44,0)(80,45,1)(81,46,0)(82,47,0)(83,44,0)(84,45,1)(85,46,0)(86,47,0)(87,44,0)(88,45,1)(89,46,0)(90,47,0)(91,44,0)(92,45,1)(93,46,0)(94,47,0)(95,44,0)(96,45,1)(96,45,1)(96,45,1)(96,45,0)(97,46,0)(98,47,0)(99,48,0)(100,47,0)(101,48,0)(102,47,0)(103,48,0)(104,47,0)(105,48,0)(106,47,0)(107,48,0)(108,45,0)(109,46,0)(110,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,46,0)(112,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,46,0)(114,47,0)(115,46,0)(116,47,0)(117,46,0)(118,47,0)(119,46,0)(120,45,0)(121,46,0)(122,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,46,0)(124,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,46,0)(126,47,0)(127,46,0)(128,47,0)(129,46,0)(130,47,0)(131,46,0)(132,45,0)(133,46,0)(134,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,46,0)(136,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,46,0)(138,47,0)(139,46,0)(140,47,0)(141,46,0)(142,47,0)(143,46,0)(144,45,0)(145,46,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(149,45,0)(149,45,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(152,45,0)(152,45,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(150,45,0)(149,45,0)

脚注

  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
  4. 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是ε0,MHO指的是BMS极限。还有一个LHO指ωY极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
  5. 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本