序数表:修订间差异
来自Googology Wiki
更多操作
无编辑摘要 |
Baixie01000a7(留言 | 贡献) 修改了拼写错误Linar->Linear |
||
(未显示4个用户的12个中间版本) | |||
第1行: | 第1行: | ||
本条目列举出一些有名字的[[序数]],它们大多在 googology | 本条目列举出一些有名字的[[序数]],它们大多在 [[googology]] 中具有重大意义。 | ||
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。 | 需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。 | ||
第5行: | 第5行: | ||
=== 序数表 === | === 序数表 === | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! 缩写 !! 英文全称 !! | ! 缩写 !! 英文全称 !! 常规表示方法([[序数坍缩函数#BOCF|BOCF]] 等) !! [[BMS]] / [[Y序列|Y]] | ||
|- | |- | ||
| [[FTO]]|| First Transfinite Ordinal || <math>\omega</math>|| <math>\mathrm{BMS}(0)(1)</math> | | [[FTO]]|| First Transfinite Ordinal || <math>\omega</math>|| <math>\mathrm{BMS}(0)(1)</math> | ||
|- | |- | ||
| [[LAO]]|| | | [[LAO]]|| Linear Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| <math>\omega^\omega</math>|| <math>\mathrm{BMS}(0)(1)(2)</math> | ||
|- | |- | ||
| [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)</math> | | [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)</math> | ||
第26行: | 第25行: | ||
| [[FSO]]|| Feferman-Schütte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math> | | [[FSO]]|| Feferman-Schütte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math> | ||
|- | |- | ||
|ACO | |[[ACO]] | ||
|Ackermann Ordinal | |Ackermann Ordinal | ||
|<math>\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math> | |<math>\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math> | ||
|<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math> | |<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math> | ||
|- | |- | ||
| [[SVO]]|| Small Veblen Ordinal || | | [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^\omega})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math> | ||
|- | |- | ||
| [[LVO]]|| Large Veblen Ordinal || | | [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^\Omega})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)</math> | ||
|- | |- | ||
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,2)</math> | | [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,2)</math> | ||
第51行: | 第50行: | ||
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math> | | [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math> | ||
|- | |- | ||
|TBO | |[[TBO]] | ||
|Transfinitary Buchholz's Ordinal | |Transfinitary Buchholz's Ordinal | ||
|<math>\psi(I(1,0,0))=\psi(M^M)</math> | |<math>\psi(I(1,0,0))=\psi(M^M)</math> | ||
第60行: | 第59行: | ||
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math> | | [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math> | ||
|- | |- | ||
|SNO | |[[SNO]] | ||
|Small 1-Mahlo (N) Ordinal | |Small 1-Mahlo (N) Ordinal | ||
|<math>\psi(N_\omega)</math> | |<math>\psi(N_\omega)</math> | ||
第67行: | 第66行: | ||
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math> | | [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math> | ||
|- | |- | ||
|SKO | |[[SKO]] | ||
|Small Weakly Compact (K) Ordinal | |Small Weakly Compact (K) Ordinal | ||
|<math>\psi(K_\omega)</math> | |<math>\psi(K_\omega)</math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math> | ||
|- | |- | ||
|DO | |[[DO]] | ||
|Duchhart's Ordinal | |Duchhart's Ordinal | ||
|<math>\psi(\ | |<math>\psi(2 \ \rm{aft} \ 4)</math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math> | ||
|- | |- | ||
第81行: | 第80行: | ||
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math> | | [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math> | ||
|- | |- | ||
|APO | |[[APO]] | ||
|Admissible-parameter free effective cardinal Ordinal | |Admissible-parameter free effective cardinal Ordinal | ||
|<math>\psi(\lambda\alpha.(\Omega_{\alpha+1})-\Pi_1)=\psi(a_2^{\Omega_{a+1}}+\ | |<math>\psi(\lambda\alpha.(\Omega_{\alpha+1})-\Pi_1)=\psi(a_2^{\Omega_{a+1}}+\psi_{a_2}(a_2^{\Omega_{a+1}})\times\omega)</math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math> | ||
|- | |- | ||
| [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})=\psi(\Omega_{a_2+1}+\ | | [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})=\psi(\Omega_{a_2+1}+\psi_{a_2}(\Omega_{a_2+1})\times\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math> | ||
|- | |- | ||
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0}=\psi(\Omega_{a_2+1}\times\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> | | [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0}=\psi(\Omega_{a_2+1}\times\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> | ||
第92行: | 第91行: | ||
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(0))-\Pi_{0})=\psi(\Omega_{a_2+1}\times a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> | | [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(0))-\Pi_{0})=\psi(\Omega_{a_2+1}\times a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> | ||
|- | |- | ||
|DSO | |[[DSO]] | ||
|Doubly +1 Stable Ordinal | |Doubly +1 Stable Ordinal | ||
|<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0=\psi(a_3) </math> | |<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0=\psi(a_3) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math> | ||
|- | |- | ||
|TSO | |[[TSO]] | ||
|Triply +1 Stable Ordinal | |Triply +1 Stable Ordinal | ||
|<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0=\psi(a_4) </math> | |<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0=\psi(a_4) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math> | ||
|- | |- | ||
| [[pfec LRO]]|| | | [[LRO|pfec LRO]]|| pfec Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | ||
|- | |- | ||
|SBO | |[[LRO|SBO]] | ||
|Small Bashicu Ordinal | |Small Bashicu Ordinal | ||
| <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math> | | <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | ||
|- | |- | ||
|pfec M2O | |[[方括号稳定|pfec M2O]] | ||
|pfec min Σ<sub>2</sub> Ordinal | |pfec min Σ<sub>2</sub> Ordinal | ||
|<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math> | |<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math>? | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math>? | ||
|- | |- | ||
|LRO | |[[LRO]] | ||
|Large Rathjen Ordinal | |Large Rathjen Ordinal | ||
|<math>F\cap\omega_1^\text{CK},\theta=\omega </math> | |<math>F\cap\omega_1^\text{CK},\theta=\omega </math> | ||
|<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math> | |<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math> | ||
|- | |- | ||
|SSPO | |[[TSSO]] / SSPO | ||
|Small Simple Projection Ordinal | |Trio Sequence System Ordinal / Small Simple Projection Ordinal | ||
|<math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math> | |<math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)</math> | ||
|- | |- | ||
| [[ | |[[LSPO]] | ||
|Large Simple Projection Ordinal | |Large Simple Projection Ordinal | ||
|<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.})=\psi(\sigma S\times S) </math> | |<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.})=\psi(\sigma S\times S) </math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math> | ||
|- | |- | ||
|Q0.5BGO | |[[Q0.5BGO]] | ||
|QSS 0. | |QSS 0.5th Back Gear Ordinal | ||
|<math>\psi(\psi_S(\sigma S\times S\times \omega+S_2)) </math> | |<math>\psi(\psi_S(\sigma S\times S\times \omega+S_2)) </math> | ||
|<math>\rm{BMS}(0)(1,1,1,1)(2,2)</math> | |<math>\rm{BMS}(0)(1,1,1,1)(2,2)</math> | ||
|- | |- | ||
|Q1BGO | |[[Q1BGO]] | ||
|QSS 1st Back Gear Ordinal | |QSS 1st Back Gear Ordinal | ||
| <math>\psi(\psi_S(\sigma S\times S\times \omega+S_\omega)) </math> | | <math>\psi(\psi_S(\sigma S\times S\times \omega+S_\omega)) </math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math> | ||
|- | |- | ||
|ESPO | |[[ESPO]] | ||
|Extend Simple Projection Ordinal | |Extend Simple Projection Ordinal | ||
| <math>\psi(\psi_S(\sigma S\times S\times \omega^2)) </math> | | <math>\psi(\psi_S(\sigma S\times S\times \omega^2)) </math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math> | ||
|- | |- | ||
|BOBO | |[[BOBO]] | ||
|Big Omega Back Ordinal | |Big Omega Back Ordinal | ||
| <math>\psi(\psi | | <math>\psi((\omega,0)-P)=\psi(\psi_{H}(H^{H\omega})) </math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math> | ||
|- | |- | ||
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}})) | | [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math> | ||
|- | |- | ||
|TCAO | |[[QSSO|TCAO]] | ||
|Trio Comprehension Axiom Ordinal | |Trio Comprehension Axiom Ordinal | ||
|<math>\text{PTO}((\Pi_3^1-CA)_0) </math> | |<math>\text{PTO}((\Pi_3^1-CA)_0) </math> | ||
第160行: | 第157行: | ||
|QiSSO | |QiSSO | ||
|Quinto Sequence System Ordinal | |Quinto Sequence System Ordinal | ||
| <math>\psi(\psi_{H}(H^{H^{H^{\omega}}})) | | <math>\psi(\psi_{H}(H^{H^{H^{\omega}}}))</math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math> | ||
|- | |- | ||
| [[SHO]]/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=\lim(\rm BMS)</math> | | [[SHO]] / BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal / Bashicu Matrix Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=\lim(\rm BMS)</math> | ||
|- | |- | ||
|βO | |βO | ||
第170行: | 第167行: | ||
|<math>\geqslant Y(1,3)</math> | |<math>\geqslant Y(1,3)</math> | ||
|- | |- | ||
| [[ΩSSO]]|| | | [[ΩSSO]]|| Ω Sequence System Ordinal || <math>\psi(\psi_H(\varphi(\Omega,H+1)))?</math>|| <math>Y(1,3,4,2,5,8,10)</math> | ||
|- | |- | ||
|LRPO | |[[LRPO]] | ||
|Large Right Projection Ordinal | |Large Right Projection Ordinal | ||
|<math>\psi(\psi_{H}(\varphi( | |<math>\psi(\psi_{H}(\varphi(H,1)))?</math> | ||
|<math>Y(1,3,4,2,5,8,10,4,9,14,17,10)</math> | |<math>Y(1,3,4,2,5,8,10,4,9,14,17,10)</math> | ||
|- | |- | ||
| [[GHO]]|| No-Go Hydra Ordinal<ref>原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本</ref>|| <math>\ | | [[GHO]]|| No-Go Hydra Ordinal<ref>原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本</ref>|| <math>\psi(\psi_H(\psi_T(T_2\times 2)))?</math>|| <math>Y(1,3,4,3)</math> | ||
|- | |||
|[[DCO]] | |||
|Difference Catching Ordinal | |||
|<math>\psi(\psi_H(\psi_T(T_2\times\psi_T(T_2^2))))?</math> | |||
|<math>Y(1,3,5)</math> | |||
|- | |- | ||
| [[SYO]]|| Small Yukito Ordinal || <math>\rm{ | | [[SYO]]|| Small Yukito Ordinal || <math>\omega \rm{ MN}(0)(,,,1)</math>|| <math>\lim(1-Y)=\omega-Y(1,4)</math> | ||
|- | |- | ||
| [[MHO]]/ωYO<ref name=":0" />|| Medium Hydra Ordinal || <math>\rm{ | | [[MHO]] / ωYO<ref name=":0" />|| Medium Hydra Ordinal / ω-Y sequence Ordinal || <math>\omega \rm{2MN}(0)(;1)</math>|| <math>\lim(\omega-Y)</math> | ||
|- | |- | ||
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{\rm CK}</math> | | [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{\rm CK}</math> | ||
第190行: | 第192行: | ||
=== 已弃用序数表 === | === 已弃用序数表 === | ||
{| class="wikitable" | {| class="wikitable" | ||
!缩写 | !缩写 | ||
!英文全称 | !英文全称 | ||
第251行: | 第236行: | ||
|SEIO | |SEIO | ||
|Small Eveog-Imagined Ordinal | |Small Eveog-Imagined Ordinal | ||
|<math>\Sigma_1\text{ | |<math>\Sigma_1\text{ adm.}</math> | ||
| | | | ||
| | | | ||
第257行: | 第242行: | ||
|MEIO | |MEIO | ||
|Medium Eveog-Imagined Ordinal | |Medium Eveog-Imagined Ordinal | ||
|<math>\Sigma_2\text{ | |<math>\Sigma_2\text{ adm.}</math> | ||
| | | | ||
| | | | ||
第263行: | 第248行: | ||
|LEIO | |LEIO | ||
|Large Eveog-Imagined Ordinal | |Large Eveog-Imagined Ordinal | ||
|<math>\Sigma_3\text{ | |<math>\Sigma_3\text{ adm.}</math> | ||
| | | | ||
| | | | ||
第284行: | 第269行: | ||
|<math>Y(1,3)</math> | |<math>Y(1,3)</math> | ||
|FataliS1024 | |FataliS1024 | ||
|- | |- | ||
|LHO | |LHO | ||
第417行: | 第396行: | ||
|夏夜星空 | |夏夜星空 | ||
|} | |} | ||
本表取自 [https://docs.qq.com/sheet/DSnFWckliSU5TTE15 Worldly Sheet]:<blockquote>- (SCO/CO/LCO/HCO)谁起不重要,重要的是这是纪念康托尔的,如果没有他所有gggist今天(甚至永远)都走不到一起” | |||
- 你们怎么把它弄成这样了,至少必要的(比如lim fffz/lim X-Y还是要的吧) | |||
- fffz和X-Y公认理想之前搞这么多名字有什么用 | |||
- 不然MHO以上全都写成n-RD?- 不对 - 3184为什么要保留他造了那么多没用的序数缩写的黑历史?(bushi) - 不如还是加上 毕竟fatalis的SHO/MHO/LHO都有了</blockquote> | |||
==== DNAO ==== | ==== DNAO ==== | ||
DNAO(Disgusting Nonsense Annoyance Ordinal) | |||
定义: | 定义: |
2025年9月7日 (日) 15:25的最新版本
本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义。
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
序数表
缩写 | 英文全称 | 常规表示方法(BOCF 等) | BMS / Y |
---|---|---|---|
FTO | First Transfinite Ordinal | ||
LAO | Linear Array Ordinal[1] | ||
SCO | Small Cantor Ordinal | ||
CO | Cantor Ordinal | ||
LCO | Large Cantor Ordinal | ||
HCO | Hyper Cantor Ordinal | ||
FSO | Feferman-Schütte Ordinal | ||
ACO | Ackermann Ordinal | ||
SVO | Small Veblen Ordinal | ||
LVO | Large Veblen Ordinal | ||
BHO | Bachmann-Howard Ordinal | ||
BO | Buchholz's Ordinal | ||
TFBO | Takeuti-Feferman-Buchholz Ordinal | ||
BIO | Bird's Ordinal[2] | ||
EBO | Extended Buchholz Ordinal | ||
JO | Jager's Ordinal | ||
SIO | Small Inaccessible Ordinal | ||
MBO | Mutiply Buchholz Ordinal | ||
TBO | Transfinitary Buchholz's Ordinal | ||
SRO | Small Rathjen Ordinal | ||
SMO | Small Mahlo Ordinal | ||
SNO | Small 1-Mahlo (N) Ordinal | ||
RO | Rathjen's Ordinal | ||
SKO | Small Weakly Compact (K) Ordinal | ||
DO | Duchhart's Ordinal | ||
SSO | Small Stegert Ordinal | ||
LSO | Large Stegert Ordinal | ||
APO | Admissible-parameter free effective cardinal Ordinal | ||
BGO | TSS 1st Back Gear Ordinal (CN ggg)[3] | ||
SDO | Small Dropping Ordinal | ||
LDO | Large Dropping Ordinal | ||
DSO | Doubly +1 Stable Ordinal | ||
TSO | Triply +1 Stable Ordinal | ||
pfec LRO | pfec Large Rathjen Ordinal | ||
SBO | Small Bashicu Ordinal | ||
pfec M2O | pfec min Σ2 Ordinal | ? | |
LRO | Large Rathjen Ordinal | ||
TSSO / SSPO | Trio Sequence System Ordinal / Small Simple Projection Ordinal | ||
LSPO | Large Simple Projection Ordinal | ||
Q0.5BGO | QSS 0.5th Back Gear Ordinal | ||
Q1BGO | QSS 1st Back Gear Ordinal | ||
ESPO | Extend Simple Projection Ordinal | ||
BOBO | Big Omega Back Ordinal | ||
QSSO | Quardo Sequence System Ordinal | ||
TCAO | Trio Comprehension Axiom Ordinal | ||
QiSSO | Quinto Sequence System Ordinal | ||
SHO / BMO[4] | Small Hydra Ordinal / Bashicu Matrix Ordinal | ||
βO | Beta Universe Ordinal | ||
ΩSSO | Ω Sequence System Ordinal | ||
LRPO | Large Right Projection Ordinal | ||
GHO | No-Go Hydra Ordinal[5] | ||
DCO | Difference Catching Ordinal | ||
SYO | Small Yukito Ordinal | ||
MHO / ωYO[4] | Medium Hydra Ordinal / ω-Y sequence Ordinal | ||
CKO | Church-Kleene Ordinal | ||
FUO | First Uncountable Ordinal |
已弃用序数表
缩写 | 英文全称 | 定义 | 大小 | 命名者 |
---|---|---|---|---|
SMDO | Small Multidimensional Ordinal | 318`4 | ||
SHO | Small Hydra Ordinal | FataliS1024 | ||
ESVO | Extended Small Veblen Ordinal | |||
ELVO | Extended Large Veblen Ordinal | |||
LDO(旧) | Large Dropping Ordinal | |||
EDO | Extended Dropping Ordinal | |||
SEIO | Small Eveog-Imagined Ordinal | |||
MEIO | Medium Eveog-Imagined Ordinal | |||
LEIO | Large Eveog-Imagined Ordinal | |||
SOSO | Second Order Stable Ordinal | |||
EGO | Eveog's Ordinal | |||
MHO | Medium Hydra Ordinal | FataliS1024 | ||
LHO | Large Hydra Ordinal | FataliS1024 | ||
ZDO | Zeta Differenciating Ordinal | |||
WYO | Omega Y Ordinal | 318`4 | ||
EYO | Extended Y Ordinal | 318`4 | ||
UCO | Upgrade Catching Ordinal | 318`4 | ||
XYO | Extreme Y Ordinal | 318`4 | ||
DMO | Difference Matrix Ordinal | 318`4 | ||
GYO / 😰O | Grand Y-Sequence Ordinal / 😰 Ordinal | 318`4 | ||
LDCO | Large Difference Catching Ordinal | 318`4 | ||
RHO | Remaining Hydra Ordinal | 318`4 | ||
WFO | Omega Fundamental Ordinal | 318`4 | ||
TMDO | Tri-Multidimensional Ordinal | 318`4 | ||
ERHO | Extended Remaining hydra Ordinal | 318`4 | ||
LMDO | Large Multidimensional Ordinal | 318`4 | ||
IFO | Infintesimal Function Ordinal | 318`4 | ||
WRO | Omega Remaining Ordinal | 318`4 | ||
SCLO | Small Code Lift Ordinal | |||
EHO | Huge Hydra Ordinal | 夏夜星空 | ||
ROO | Remaining Omega Ordinal | 318`4 | ||
UHO | Ultimate Hydra Ordinal | 夏夜星空 | ||
IHO | Infinite Hydra Ordinal | 夏夜星空 |
本表取自 Worldly Sheet:
- (SCO/CO/LCO/HCO)谁起不重要,重要的是这是纪念康托尔的,如果没有他所有gggist今天(甚至永远)都走不到一起”
- 你们怎么把它弄成这样了,至少必要的(比如lim fffz/lim X-Y还是要的吧)
- fffz和X-Y公认理想之前搞这么多名字有什么用
- 不然MHO以上全都写成n-RD?- 不对 - 3184为什么要保留他造了那么多没用的序数缩写的黑历史?(bushi) - 不如还是加上 毕竟fatalis的SHO/MHO/LHO都有了
DNAO
DNAO(Disgusting Nonsense Annoyance Ordinal)
定义:
(0)(1,1,1)(2,2,2)(3,3,3)(3,3,0)(4,4,1)(5,5,2)(6,6,2)(7,7,0)(8,8,1)(9,9,2)(10,9,2)(11,9,0)(12,10,1)(13,11,2)(13,11,2)(13,11,1)(14,12,2)(14,11,1)(15,12,2)(15,11,1)(16,12,0)(17,13,1)(18,14,2)(18,14,2)(18,14,1)(19,15,2)(19,14,1)(20,15,2)(20,14,1)(21,15,0)(22,16,1)(23,17,2)(23,17,2)(23,17,1)(24,18,2)(24,17,1)(25,18,2)(25,17,0)(26,18,1)(27,19,2)(27,19,2)(27,19,1)(28,20,2)(28,19,1)(29,20,2)(29,19,0)(30,20,1)(31,21,2)(31,21,2)(31,21,1)(32,22,2)(32,21,1)(33,22,2)(33,21,0)(34,22,1)(35,23,2)(35,23,2)(35,23,1)(36,24,2)(36,23,1)(37,24,2)(37,23,0)(38,24,1)(39,25,2)(40,25,2)(40,25,1)(41,26,2)(41,22,1)(42,23,2)(42,23,2)(42,23,1)(43,24,2)(43,23,1)(44,24,2)(44,23,0)(45,24,1)(46,25,2)(47,25,2)(47,25,1)(48,26,1)(49,27,0)(50,28,1)(51,29,2)(52,29,2)(52,29,1)(53,30,0)(54,31,1)(55,32,2)(56,32,2)(56,32,0)(57,33,1)(58,34,2)(59,34,2)(59,34,0)(60,35,1)(61,36,2)(62,36,2)(62,36,0)(63,37,1)(64,38,2)(65,38,2)(65,38,0)(66,39,1)(67,40,2)(68,40,2)(68,40,0)(69,41,1)(70,42,2)(71,42,2)(71,42,0)(72,43,1)(73,44,0)(74,45,1)(75,44,0)(76,45,1)(77,46,0)(78,47,0)(79,44,0)(80,45,1)(81,46,0)(82,47,0)(83,44,0)(84,45,1)(85,46,0)(86,47,0)(87,44,0)(88,45,1)(89,46,0)(90,47,0)(91,44,0)(92,45,1)(93,46,0)(94,47,0)(95,44,0)(96,45,1)(96,45,1)(96,45,1)(96,45,0)(97,46,0)(98,47,0)(99,48,0)(100,47,0)(101,48,0)(102,47,0)(103,48,0)(104,47,0)(105,48,0)(106,47,0)(107,48,0)(108,45,0)(109,46,0)(110,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,47,0)(111,46,0)(112,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,47,0)(113,46,0)(114,47,0)(115,46,0)(116,47,0)(117,46,0)(118,47,0)(119,46,0)(120,45,0)(121,46,0)(122,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,47,0)(123,46,0)(124,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,47,0)(125,46,0)(126,47,0)(127,46,0)(128,47,0)(129,46,0)(130,47,0)(131,46,0)(132,45,0)(133,46,0)(134,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,47,0)(135,46,0)(136,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,47,0)(137,46,0)(138,47,0)(139,46,0)(140,47,0)(141,46,0)(142,47,0)(143,46,0)(144,45,0)(145,46,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(149,45,0)(148,45,0)(149,45,0)(147,45,0)(148,46,0)(148,45,0)(149,46,0)(149,45,0)(150,46,0)(150,45,0)(151,45,0)(151,45,0)(150,45,0)(151,45,0)(148,45,0)(149,46,0)(149,45,0)(150,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(150,45,0)(149,45,0)(149,45,0)(149,45,0)(146,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,47,0)(147,46,0)(147,46,0)(147,46,0)(147,46,0)(147,45,0)(148,46,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(150,45,0)(151,46,0)(151,45,0)(152,46,0)(152,45,0)(153,46,0)(153,45,0)(154,45,0)(154,45,0)(153,45,0)(154,45,0)(151,45,0)(152,46,0)(152,45,0)(153,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(153,45,0)(152,45,0)(152,45,0)(152,45,0)(149,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,47,0)(150,46,0)(150,46,0)(150,46,0)(150,46,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(152,47,0)(152,47,0)(151,45,0)(152,46,0)(153,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,46,0)(152,47,0)(150,45,0)(151,45,0)(152,45,0)(152,45,0)(151,45,0)(152,45,0)(152,45,0)(150,45,0)(149,45,0)
脚注
- ↑ 因为在googology一度经典的线性数阵的极限是它,因此得名
- ↑ 鸟之数阵第四版的极限是它,因此得名
- ↑ Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
- ↑ 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是,MHO指的是BMS极限。还有一个LHO指极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
- ↑ 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本