打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表

来自Googology Wiki
Z留言 | 贡献2025年7月5日 (六) 16:37的版本

本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义

需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF等) BMS/Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linar Array Ordinal[1] ωω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0)=ε0=ψ(Ω) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0)=ζ0=ψ(Ω2) BMS(0,0)(1,1)(2,1)
LCO Large Cantor Ordinal φ(3,0)=η0=ψ(Ω3) BMS(0,0)(1,1)(2,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0)=ψ(Ωω) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schutte Ordinal φ(1,0,0)=Γ0=ψ(ΩΩ) BMS(0,0)(1,1)(2,1)(3,1)
ACO Ackermann Ordinal φ(1,0,0,0)=ψ(ΩΩ2) BMS(0,0)(1,1)(2,1)(3,1)(3,1)
SVO Small Veblen Ordinal ψ(ΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(ΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
ESVO Extended Small Veblen Ordinal ψ(ΩΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)
ELVO Extended Large Veblen Ordinal ψ(ΩΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)(5,1)
BHO Bachmann-Howard Ordinal ψ(Ω2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ωω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ωω+1) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(ΩΩ) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(ΩI+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(Iω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0))=ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
TBO Transfinitary Buchholz's Ordinal ψ(I(1,0,0))=ψ(MM) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)
SRO Small Rathjen Ordinal ψ(εM+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
SMO Small Mahlo Ordinal ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)
SNO Small 1-Mahlo (N) Ordinal ψ(Nω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)
RO Rathjen's Ordinal ψ(εK+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SKO Small Weakly Compact (K) Ordinal ψ(Kω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)
DO Duchhart's Ordinal ψ(Ω(Π4+1)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)
SSO Small Stegert Ordinal ψ(psd.Πω)=ψ(a2) BMS(0,0,0)(1,1,1)(2,2,0)
BGO TSS 1st Back Gear Ordinal ψ(psd.Πω)=ψ(a2) BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)Π0)=ψ(a2a) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
APO Admissible-parameter free effective cardinal Ordinal ψ(1((+)Π1))=ψ(a2Ωa+1) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)
BGO TSS 1st Back Gear Ordinal (CN ggg)[3] ψ(Π1λα.(Ωα+2)Π1)=ψ(Ωa2+1) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)Π0=ψ(Ωa2+ω) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(OFP aft α)Π0)=ψ(Ωa2+1×a2) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
DSO Doubly +1 Stable Ordinal ψ(λα.(λβ.β+1Π0)Π0=ψ(a3) BMS(0,0,0)(1,1,1)(2,2,1)(3,3,0)
TSO Triply +1 Stable Ordinal ψ(λα.(λβ.(λγ.γ+1Π0)Π0)Π0=ψ(a4) BMS(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)
pfec LRO p.f.e.c. Large Rathjen Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
SBO Small Bashicu Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
pfec M2O pfec min Σ2 Ordinal ψ(pfec.min(aΣ1bΣ2c)) BMS(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)
LRO Large Rathjen Ordinal Fω1CK,θ=ω BMS(0)(1,1,1,1)?
SSPO Small Simple Projection Ordinal ψ(ωproj.)=ψ(σS×ω)=ψ(Hω) BMS(0)(1,1,1,1)
TSSO Trio Sequence System Ordinal ψ(ωproj.)=ψ(σS×ω)=ψ(Hω) BMS(0)(1,1,1,1)
LSPO Large Simple Projection Ordinal ψ(min α is αproj.)=ψ(σS×S) BMS(0)(1,1,1,1)(2,1,1,1)(3,1)(2)
EO Eveog's Ordinal ψ(ψσ(σn)) BMS(0)(1,1,1,1)(2,2,1,1)(3)
Q1BGO Quadro Sequence System 1st Back Gear Ordinal - BMS(0)(1,1,1,1)(2,2,2)
ESPO Extend Simple Projection Ordinal - BMS(0)(1,1,1,1)(2,2,2,1)
BOBO Big Omega Back Ordinal - BMS(0)(1,1,1,1)(2,2,2,2)
QSSO Quardo Sequence System Ordinal ψ(ψH(HHω))? BMS(0,0,0,0,0)(1,1,1,1,1)
TCAO Trio Comprehension Axiom Ordinal PTO((Π31CA)0) BMS(0)(1,1,1,1,1)
QiSSO Quinto Sequence System Ordinal - BMS(0)(1,1,1,1,1,1)
SHO/BMO[4] Small Hydra Ordinal ψ(ψH(εH+1))? Y(1,3)=BMS极限
ΩSSO \Omega Sequence System Ordinal Y(1,3,4,2,5,8,10)
GHO No-Go Hydra Ordinal[5] Y(1,3,4,3)
SYO Small Yukito Ordinal ωY(1,4)
MHO/ωYO[4] Medium Hydra Ordinal ωY 极限
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1
  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
  4. 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是ε0,MHO指的是BMS极限。还有一个LHO指ωY极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
  5. 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本