序数表:修订间差异
来自Googology Wiki
更多操作
小 →序数表 |
小无编辑摘要 |
||
第30行: | 第30行: | ||
|<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math> | |<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math> | ||
|- | |- | ||
| [[SVO]]|| Small Veblen Ordinal || < | | [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math> | ||
|- | |- | ||
| [[LVO]]|| Large Veblen Ordinal || < | | [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)</math> | ||
|- | |- | ||
| [[ESVO]]|| Extended Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega^\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)</math> | | [[ESVO]]|| Extended Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega^\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)</math> | ||
第56行: | 第56行: | ||
|TBO | |TBO | ||
|Transfinitary Buchholz's Ordinal | |Transfinitary Buchholz's Ordinal | ||
| | |<math>\psi(I(1,0,0))=\psi(M^M)</math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)</math> | ||
|- | |- | ||
第84行: | 第84行: | ||
|BGO | |BGO | ||
|TSS 1st Back Gear Ordinal | |TSS 1st Back Gear Ordinal | ||
| | | <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> | ||
|- | |- | ||
第91行: | 第91行: | ||
|APO | |APO | ||
|Admissible-parameter free effective cardinal Ordinal | |Admissible-parameter free effective cardinal Ordinal | ||
|<math>\psi(1-((+)-\Pi_1)) </math> | |<math>\psi(1-((+)-\Pi_1))=\psi(a_2^{\Omega_{a+1}})</math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math> | ||
|- | |- | ||
| [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math> | | [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})=\psi(\Omega_{a_2+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math> | ||
|- | |- | ||
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> | | [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0}=\psi(\Omega_{a_2+\omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> | ||
|- | |- | ||
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> | | [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})=\psi(\Omega_{a_2+1}\times a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> | ||
|- | |- | ||
|DSO | |DSO | ||
|Doubly +1 Stable Ordinal | |Doubly +1 Stable Ordinal | ||
|<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0 </math> | |<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0=\psi(a_3) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math> | ||
|- | |- | ||
|TSO | |TSO | ||
|Triply +1 Stable Ordinal | |Triply +1 Stable Ordinal | ||
|<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0 </math> | |<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0=\psi(a_4) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math> | ||
|- | |- | ||
| pfec LRO|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | | pfec LRO|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | ||
|- | |- | ||
|SBO | |SBO | ||
|Small Bashicu Ordinal | |Small Bashicu Ordinal | ||
| - | | <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | ||
|- | |- | ||
第120行: | 第120行: | ||
|pfec min Σ<sub>2</sub> Ordinal | |pfec min Σ<sub>2</sub> Ordinal | ||
|<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math> | |<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math> | ||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math> | |<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math>? | ||
|- | |- | ||
|LRO | |LRO | ||
第129行: | 第129行: | ||
|SSPO | |SSPO | ||
|Small Simple Projection Ordinal | |Small Simple Projection Ordinal | ||
|<math>\psi( | |<math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)</math> | ||
|- | |- | ||
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega- | | [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-\text{proj.})=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0)(1,1,1,1)</math> | ||
|- | |- | ||
|LSPO | |LSPO | ||
|Large Simple Projection Ordinal | |Large Simple Projection Ordinal | ||
|<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.}) </math> | |<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.})=\psi(\sigma S\times S) </math> | ||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math> | |<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math> | ||
|- | |- |
2025年7月5日 (六) 16:37的版本
本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
序数表
缩写 | 英文全称 | 常规表示方法(BOCF等) | BMS/Y |
---|---|---|---|
FTO | First Transfinite Ordinal | ||
LAO | Linar Array Ordinal[1] | ||
SCO | Small Cantor Ordinal | ||
CO | Cantor Ordinal | ||
LCO | Large Cantor Ordinal | ||
HCO | Hyper Cantor Ordinal | ||
FSO | Feferman-Schutte Ordinal | ||
ACO | Ackermann Ordinal | ||
SVO | Small Veblen Ordinal | ||
LVO | Large Veblen Ordinal | ||
ESVO | Extended Small Veblen Ordinal | ||
ELVO | Extended Large Veblen Ordinal | ||
BHO | Bachmann-Howard Ordinal | ||
BO | Buchholz's Ordinal | ||
TFBO | Takeuti-Feferman-Buchholz Ordinal | ||
BIO | Bird's Ordinal[2] | ||
EBO | Extended Buchholz Ordinal | ||
JO | Jager's Ordinal | ||
SIO | Small Inaccessible Ordinal | ||
MBO | Mutiply Buchholz Ordinal | ||
TBO | Transfinitary Buchholz's Ordinal | ||
SRO | Small Rathjen Ordinal | ||
SMO | Small Mahlo Ordinal | ||
SNO | Small 1-Mahlo (N) Ordinal | ||
RO | Rathjen's Ordinal | ||
SKO | Small Weakly Compact (K) Ordinal | ||
DO | Duchhart's Ordinal | ||
SSO | Small Stegert Ordinal | ||
BGO | TSS 1st Back Gear Ordinal | ||
LSO | Large Stegert Ordinal | ||
APO | Admissible-parameter free effective cardinal Ordinal | ||
BGO | TSS 1st Back Gear Ordinal (CN ggg)[3] | ||
SDO | Small Dropping Ordinal | ||
LDO | Large Dropping Ordinal | ||
DSO | Doubly +1 Stable Ordinal | ||
TSO | Triply +1 Stable Ordinal | ||
pfec LRO | p.f.e.c. Large Rathjen Ordinal | ||
SBO | Small Bashicu Ordinal | ||
pfec M2O | pfec min Σ2 Ordinal | ? | |
LRO | Large Rathjen Ordinal | ||
SSPO | Small Simple Projection Ordinal | ||
TSSO | Trio Sequence System Ordinal | ||
LSPO | Large Simple Projection Ordinal | ||
EO | Eveog's Ordinal | ||
Q1BGO | Quadro Sequence System 1st Back Gear Ordinal | - | |
ESPO | Extend Simple Projection Ordinal | - | |
BOBO | Big Omega Back Ordinal | - | |
QSSO | Quardo Sequence System Ordinal | ||
TCAO | Trio Comprehension Axiom Ordinal | ||
QiSSO | Quinto Sequence System Ordinal | - | |
SHO/BMO[4] | Small Hydra Ordinal | ||
ΩSSO | \Omega Sequence System Ordinal | ||
GHO | No-Go Hydra Ordinal[5] | ||
SYO | Small Yukito Ordinal | ||
MHO/ωYO[4] | Medium Hydra Ordinal | 极限 | |
CKO | Church-Kleene Ordinal | ||
FUO | First Uncountable Ordinal |
- ↑ 因为在googology一度经典的线性数阵的极限是它,因此得名
- ↑ 鸟之数阵第四版的极限是它,因此得名
- ↑ Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
- ↑ 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是,MHO指的是BMS极限。还有一个LHO指极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
- ↑ 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本