打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表:修订间差异

来自Googology Wiki
Partygoer002留言 | 贡献
Tabelog留言 | 贡献
无编辑摘要
第62行: 第62行:
|-
|-
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math>
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math>
|-
|SNO
|Small 1-Mahlo (N) Ordinal
|<math>\psi(N_\omega)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)</math>
|-
|-
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
|-
|-
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
|SKO
|Small Weakly Compact (K) Ordinal
|<math>\psi(K_\omega)</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math>
|-
|DO
|Duchhart's Ordinal
|<math>\psi(\Omega(\Pi_4+1))</math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math>
|-
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
|-
|BGO
|TSS 1st Back Gear Ordinal
| -
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
|-
|-
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
|-
|-
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math>
|APO
|Admissible-parameter free effective cardinal Ordinal
|<math>\psi(1-((+)-\Pi_1)) </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math>
|-
| [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math>
|-
|-
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
第75行: 第100行:
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
|-
|-
| [[pLRO]]|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|DSO
|Doubly +1 Stable Ordinal
|<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0 </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math>
|-
|TSO
|Triply +1 Stable Ordinal
|<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0 </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math>
|-
| pfec LRO|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|-
|SBO
|Small Bashicu Ordinal
| -
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|-
|pfec M2O
|pfec min Σ<sub>2</sub> Ordinal
|<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math>
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math>
|-
|LRO
|Large Rathjen Ordinal
|<math>F\cap\omega_1^\text{CK},\theta=\omega </math>
|<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math>
|-
|-
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0,0,0,0)(1,1,1,1)</math>
|SSPO
|Small Simple Projection Ordinal
|<math>\psi(psd.\omega-\text{proj.}) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)</math>
|-
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0)(1,1,1,1)</math>
|-
|LSPO
|Large Simple Projection Ordinal
|<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.}) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math>
|-
|EO
|Eveog's Ordinal
|<math>\psi(\psi_\sigma(\sigma_n)) </math>
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,1,1)(3)</math>
|-
|Q1BGO
|Quadro Sequence System 1st Back Gear Ordinal
| -
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math>
|-
|ESPO
|Extend Simple Projection Ordinal
| -
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math>
|-
|BOBO
|Big Omega Back Ordinal
| -
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math>
|-
|-
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math>
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math>
|-
|TCAO
|Trio Comprehension Axiom Ordinal
|<math>\text{PTO}((\Pi_3^1-CA)_0) </math>
|<math>\geqslant\mathrm{BMS}(0)(1,1,1,1,1)</math>
|-
|QiSSO
|Quinto Sequence System Ordinal
| -
|<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math>
|-
|-
| SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math>
| SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math>

2025年7月4日 (五) 21:39的版本

本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义

需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF等) BMS/Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linar Array Ordinal[1] ωω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0)=ε0=ψ(Ω) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0)=ζ0=ψ(Ω2) BMS(0,0)(1,1)(2,1)
LCO Large Cantor Ordinal φ(3,0)=η0=ψ(Ω3) BMS(0,0)(1,1)(2,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0)=ψ(Ωω) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schutte Ordinal φ(1,0,0)=Γ0=ψ(ΩΩ) BMS(0,0)(1,1)(2,1)(3,1)
ACO Ackermann Ordinal φ(1,0,0,0) BMS(0,0)(1,1)(2,1)(3,1)(3,1)
SVO Small Veblen Ordinal ψ(ΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(ΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
ESVO Extended Small Veblen Ordinal ψ(ΩΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,1)(5,0)
ELVO Large Veblen Ordinal ψ(ΩΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)(5,1)
BHO Bachmann-Howard Ordinal ψ(Ω2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ωω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ωω+1) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(ΩΩ) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(ΩI+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(Iω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0))=ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
TBO Transfinitary Buchholz's Ordinal \( \psi(I(1@(1,0))) \) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)
SRO Small Rathjen Ordinal ψ(εM+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
SMO Small Mahlo Ordinal ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)
SNO Small 1-Mahlo (N) Ordinal ψ(Nω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)
RO Rathjen's Ordinal ψ(εK+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SKO Small Weakly Compact (K) Ordinal ψ(Kω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)
DO Duchhart's Ordinal ψ(Ω(Π4+1)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)
SSO Small Stegert Ordinal ψ(psd.Πω)=ψ(a2) BMS(0,0,0)(1,1,1)(2,2,0)
BGO TSS 1st Back Gear Ordinal - BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)Π0)=ψ(a2a) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
APO Admissible-parameter free effective cardinal Ordinal ψ(1((+)Π1)) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)
BGO TSS 1st Back Gear Ordinal (CN ggg)[3] ψ(Π1λα.(Ωα+2)Π1) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(OFP aft α)Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
DSO Doubly +1 Stable Ordinal ψ(λα.(λβ.β+1Π0)Π0 BMS(0,0,0)(1,1,1)(2,2,1)(3,3,0)
TSO Triply +1 Stable Ordinal ψ(λα.(λβ.(λγ.γ+1Π0)Π0)Π0 BMS(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)
pfec LRO p.f.e.c. Large Rathjen Ordinal ψ(pfec.ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
SBO Small Bashicu Ordinal - BMS(0,0,0)(1,1,1)(2,2,2)
pfec M2O pfec min Σ2 Ordinal ψ(pfec.min(aΣ1bΣ2c)) BMS(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)
LRO Large Rathjen Ordinal Fω1CK,θ=ω BMS(0)(1,1,1,1)?
SSPO Small Simple Projection Ordinal ψ(psd.ωproj.) BMS(0)(1,1,1,1)
TSSO Trio Sequence System Ordinal ψ(ωprojection)=ψ(σS×ω)=ψ(Hω) BMS(0)(1,1,1,1)
LSPO Large Simple Projection Ordinal ψ(min α is αproj.) BMS(0)(1,1,1,1)(2,1,1,1)(3,1)(2)
EO Eveog's Ordinal ψ(ψσ(σn)) BMS(0)(1,1,1,1)(2,2,1,1)(3)
Q1BGO Quadro Sequence System 1st Back Gear Ordinal - BMS(0)(1,1,1,1)(2,2,2)
ESPO Extend Simple Projection Ordinal - BMS(0)(1,1,1,1)(2,2,2,1)
BOBO Big Omega Back Ordinal - BMS(0)(1,1,1,1)(2,2,2,2)
QSSO Quardo Sequence System Ordinal ψ(ψH(HHω))? BMS(0,0,0,0,0)(1,1,1,1,1)
TCAO Trio Comprehension Axiom Ordinal PTO((Π31CA)0) BMS(0)(1,1,1,1,1)
QiSSO Quinto Sequence System Ordinal - BMS(0)(1,1,1,1,1,1)
SHO/BMO[4] Small Hydra Ordinal ψ(ψH(εH+1))? Y(1,3)=BMS极限
ΩSSO \Omega Sequence System Ordinal Y(1,3,4,2,5,8,10)
GHO No-Go Hydra Ordinal[5] Y(1,3,4,3)
SYO Small Yukito Ordinal ωY(1,4)
MHO/ωYO[4] Medium Hydra Ordinal ωY 极限
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1
  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
  4. 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是ε0,MHO指的是BMS极限。还有一个LHO指ωY极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
  5. 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本