序数表:修订间差异
来自Googology Wiki
更多操作
Partygoer002(留言 | 贡献) |
小无编辑摘要 |
||
| 第62行: | 第62行: | ||
|- | |- | ||
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math> | | [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math> | ||
|- | |||
|SNO | |||
|Small 1-Mahlo (N) Ordinal | |||
|<math>\psi(N_\omega)</math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)</math> | |||
|- | |- | ||
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math> | | [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math> | ||
|- | |- | ||
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> | |SKO | ||
|Small Weakly Compact (K) Ordinal | |||
|<math>\psi(K_\omega)</math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)</math> | |||
|- | |||
|DO | |||
|Duchhart's Ordinal | |||
|<math>\psi(\Omega(\Pi_4+1))</math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)</math> | |||
|- | |||
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(psd.\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> | |||
|- | |||
|BGO | |||
|TSS 1st Back Gear Ordinal | |||
| - | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math> | |||
|- | |- | ||
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math> | | [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math> | ||
|- | |- | ||
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math> | |APO | ||
|Admissible-parameter free effective cardinal Ordinal | |||
|<math>\psi(1-((+)-\Pi_1)) </math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)</math> | |||
|- | |||
| [[BGO]]|| TSS 1st Back Gear Ordinal (CN ggg)<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math> | |||
|- | |- | ||
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> | | [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math> | ||
| 第75行: | 第100行: | ||
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> | | [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math> | ||
|- | |- | ||
| | |DSO | ||
|Doubly +1 Stable Ordinal | |||
|<math>\psi(\lambda\alpha.(\lambda\beta.\beta+1-\Pi_0)-\Pi_0 </math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,0)</math> | |||
|- | |||
|TSO | |||
|Triply +1 Stable Ordinal | |||
|<math>\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.\gamma+1-\Pi_0)-\Pi_0)-\Pi_0 </math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)</math> | |||
|- | |||
| pfec LRO|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(pfec.\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | |||
|- | |||
|SBO | |||
|Small Bashicu Ordinal | |||
| - | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math> | |||
|- | |||
|pfec M2O | |||
|pfec min Σ<sub>2</sub> Ordinal | |||
|<math>\psi(pfec.\min(a\prec_{\Sigma_1}b\prec_{\Sigma_2}c)) </math> | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)(3,2,2)(4,2,2)(4,2,1)</math> | |||
|- | |||
|LRO | |||
|Large Rathjen Ordinal | |||
|<math>F\cap\omega_1^\text{CK},\theta=\omega </math> | |||
|<math>\leqslant\mathrm{BMS}(0)(1,1,1,1)?</math> | |||
|- | |- | ||
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0,0,0,0)(1,1,1,1)</math> | |SSPO | ||
|Small Simple Projection Ordinal | |||
|<math>\psi(psd.\omega-\text{proj.}) </math> | |||
|<math>\mathrm{BMS}(0)(1,1,1,1)</math> | |||
|- | |||
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0)(1,1,1,1)</math> | |||
|- | |||
|LSPO | |||
|Large Simple Projection Ordinal | |||
|<math>\psi(\min\ \alpha\text{ is }\alpha-\text{proj.}) </math> | |||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,1,1,1)(3,1)(2)</math> | |||
|- | |||
|EO | |||
|Eveog's Ordinal | |||
|<math>\psi(\psi_\sigma(\sigma_n)) </math> | |||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,1,1)(3)</math> | |||
|- | |||
|Q1BGO | |||
|Quadro Sequence System 1st Back Gear Ordinal | |||
| - | |||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2)</math> | |||
|- | |||
|ESPO | |||
|Extend Simple Projection Ordinal | |||
| - | |||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,1)</math> | |||
|- | |||
|BOBO | |||
|Big Omega Back Ordinal | |||
| - | |||
|<math>\mathrm{BMS}(0)(1,1,1,1)(2,2,2,2)</math> | |||
|- | |- | ||
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math> | | [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math> | ||
|- | |||
|TCAO | |||
|Trio Comprehension Axiom Ordinal | |||
|<math>\text{PTO}((\Pi_3^1-CA)_0) </math> | |||
|<math>\geqslant\mathrm{BMS}(0)(1,1,1,1,1)</math> | |||
|- | |||
|QiSSO | |||
|Quinto Sequence System Ordinal | |||
| - | |||
|<math>\mathrm{BMS}(0)(1,1,1,1,1,1)</math> | |||
|- | |- | ||
| SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math> | | SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math> | ||
2025年7月4日 (五) 21:39的版本
本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
序数表
| 缩写 | 英文全称 | 常规表示方法(BOCF等) | BMS/Y |
|---|---|---|---|
| FTO | First Transfinite Ordinal | ||
| LAO | Linar Array Ordinal[1] | ||
| SCO | Small Cantor Ordinal | ||
| CO | Cantor Ordinal | ||
| LCO | Large Cantor Ordinal | ||
| HCO | Hyper Cantor Ordinal | ||
| FSO | Feferman-Schutte Ordinal | ||
| ACO | Ackermann Ordinal | ||
| SVO | Small Veblen Ordinal | ||
| LVO | Large Veblen Ordinal | ||
| ESVO | Extended Small Veblen Ordinal | ||
| ELVO | Large Veblen Ordinal | ||
| BHO | Bachmann-Howard Ordinal | ||
| BO | Buchholz's Ordinal | ||
| TFBO | Takeuti-Feferman-Buchholz Ordinal | ||
| BIO | Bird's Ordinal[2] | ||
| EBO | Extended Buchholz Ordinal | ||
| JO | Jager's Ordinal | ||
| SIO | Small Inaccessible Ordinal | ||
| MBO | Mutiply Buchholz Ordinal | ||
| TBO | Transfinitary Buchholz's Ordinal | \( \psi(I(1@(1,0))) \) | |
| SRO | Small Rathjen Ordinal | ||
| SMO | Small Mahlo Ordinal | ||
| SNO | Small 1-Mahlo (N) Ordinal | ||
| RO | Rathjen's Ordinal | ||
| SKO | Small Weakly Compact (K) Ordinal | ||
| DO | Duchhart's Ordinal | ||
| SSO | Small Stegert Ordinal | ||
| BGO | TSS 1st Back Gear Ordinal | - | |
| LSO | Large Stegert Ordinal | ||
| APO | Admissible-parameter free effective cardinal Ordinal | ||
| BGO | TSS 1st Back Gear Ordinal (CN ggg)[3] | ||
| SDO | Small Dropping Ordinal | ||
| LDO | Large Dropping Ordinal | ||
| DSO | Doubly +1 Stable Ordinal | ||
| TSO | Triply +1 Stable Ordinal | ||
| pfec LRO | p.f.e.c. Large Rathjen Ordinal | ||
| SBO | Small Bashicu Ordinal | - | |
| pfec M2O | pfec min Σ2 Ordinal | ||
| LRO | Large Rathjen Ordinal | ||
| SSPO | Small Simple Projection Ordinal | ||
| TSSO | Trio Sequence System Ordinal | ||
| LSPO | Large Simple Projection Ordinal | ||
| EO | Eveog's Ordinal | ||
| Q1BGO | Quadro Sequence System 1st Back Gear Ordinal | - | |
| ESPO | Extend Simple Projection Ordinal | - | |
| BOBO | Big Omega Back Ordinal | - | |
| QSSO | Quardo Sequence System Ordinal | ||
| TCAO | Trio Comprehension Axiom Ordinal | ||
| QiSSO | Quinto Sequence System Ordinal | - | |
| SHO/BMO[4] | Small Hydra Ordinal | ||
| ΩSSO | \Omega Sequence System Ordinal | ||
| GHO | No-Go Hydra Ordinal[5] | ||
| SYO | Small Yukito Ordinal | ||
| MHO/ωYO[4] | Medium Hydra Ordinal | 极限 | |
| CKO | Church-Kleene Ordinal | ||
| FUO | First Uncountable Ordinal |
- ↑ 因为在googology一度经典的线性数阵的极限是它,因此得名
- ↑ 鸟之数阵第四版的极限是它,因此得名
- ↑ Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
- ↑ 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是,MHO指的是BMS极限。还有一个LHO指极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
- ↑ 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本