序数表:修订间差异
来自Googology Wiki
更多操作
小无编辑摘要 |
小无编辑摘要 |
||
第15行: | 第15行: | ||
|- | |- | ||
| [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)</math> | | [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)</math> | ||
|- | |||
|LCO | |||
|Large Cantor Ordinal | |||
|<math>\varphi(3,0)=\eta_0=\psi(\Omega^3)</math> | |||
|<math>\mathrm{BMS}(0,0)(1,1)(2,1)(2,1)</math> | |||
|- | |- | ||
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,0)</math> | | [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,0)</math> | ||
|- | |- | ||
| [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math> | | [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math> | ||
|- | |||
|ACO | |||
|Ackermann Ordinal | |||
|<math>\varphi(1,0,0,0)</math> | |||
|<math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(3,1)</math> | |||
|- | |- | ||
| [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math> | | [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math> | ||
第39行: | 第49行: | ||
|- | |- | ||
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math> | | [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math> | ||
|- | |||
|TBO | |||
|Transfinitary Buchholz's Ordinal | |||
|\( \psi(I(1@(1,0))) \) | |||
|<math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(2,0,0)</math> | |||
|- | |- | ||
| [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\varepsilon_{M+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math> | | [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\varepsilon_{M+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math> |
2025年7月4日 (五) 19:52的版本
本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
序数表
缩写 | 英文全称 | 常规表示方法(BOCF等) | BMS/Y |
---|---|---|---|
FTO | First Transfinite Ordinal | ||
LAO | Linar Array Ordinal[1] | ||
SCO | Small Cantor Ordinal | ||
CO | Cantor Ordinal | ||
LCO | Large Cantor Ordinal | ||
HCO | Hyper Cantor Ordinal | ||
FSO | Feferman-Schutte Ordinal | ||
ACO | Ackermann Ordinal | ||
SVO | Small Veblen Ordinal | ||
LVO | Large Veblen Ordinal | ||
BHO | Bachmann-Howard Ordinal | ||
BO | Buchholz's Ordinal | ||
TFBO | Takeuti-Feferman-Buchholz Ordinal | ||
BIO | Bird's Ordinal[2] | ||
EBO | Extended Buchholz Ordinal | ||
JO | Jager's Ordinal | ||
SIO | Small Inaccessible Ordinal | ||
MBO | Mutiply Buchholz Ordinal | ||
TBO | Transfinitary Buchholz's Ordinal | \( \psi(I(1@(1,0))) \) | |
SRO | Small Rathjen Ordinal | ||
SMO | Small Mahlo Ordinal | ||
RO | Rathjen's Ordinal | ||
SSO | Small Stegert Ordinal | ||
LSO | Large Stegert Ordinal | ||
BGO | TSS 1st Back Gear Ordinal[3] | ||
SDO | Small Dropping Ordinal | ||
LDO | Large Dropping Ordinal | ||
pLRO | p.f.e.c. Large Rathjen Ordinal | ||
TSSO | Trio Sequence System Ordinal | ||
QSSO | Quardo Sequence System Ordinal | ||
SHO/BMO[4] | Small Hydra Ordinal | ||
ΩSSO | \Omega Sequence System Ordinal | ||
GHO | No-Go Hydra Ordinal[5] | ||
SYO | Small Yukito Ordinal | ||
MHO/ωYO[4] | Medium Hydra Ordinal | 极限 | |
CKO | Church-Kleene Ordinal | ||
FUO | First Uncountable Ordinal |
- ↑ 因为在googology一度经典的线性数阵的极限是它,因此得名
- ↑ 鸟之数阵第四版的极限是它,因此得名
- ↑ Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
- ↑ 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是,MHO指的是BMS极限。还有一个LHO指极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
- ↑ 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本