打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表:修订间差异

来自Googology Wiki
Z留言 | 贡献
无编辑摘要
Zhy137036留言 | 贡献
无编辑摘要
第1行: 第1行:
本条目列举出一些有名字的[[序数]],它们大多在googology中具有重大意义
本条目列举出一些有名字的[[序数]],它们大多在 googology 中具有重大意义


需要注意的是,它们的命名很多来自googology爱好者而非专业数学研究者。
需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。
== 序数表 ==
== 序数表 ==
{| class="wikitable"
{| class="wikitable"
第8行: 第8行:
! 缩写 !! 英文全称 !! 常规表示方法(BOCF等) !! BMS/Y
! 缩写 !! 英文全称 !! 常规表示方法(BOCF等) !! BMS/Y
|-
|-
| FTO || First Transfinite Ordinal || <math>\omega</math>|| <math>BMS(0)(1)</math>
| FTO || First Transfinite Ordinal || <math>\omega</math>|| <math>\mathrm{BMS}(0)(1)</math>
|-
|-
| LAO || Linar Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| <math>\omega^\omega</math>|| <math>BMS(0)(1)(2)</math>
| LAO || Linar Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| <math>\omega^\omega</math>|| <math>\mathrm{BMS}(0)(1)(2)</math>
|-
|-
| [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>BMS(0,0)(1,1)</math>
| [[SCO]]|| Small Cantor Ordinal || <math>\varphi(1,0)=\varepsilon_0=\psi(\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)</math>
|-
|-
| [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>BMS(0,0)(1,1)(2,1)</math>
| [[CO]]|| Cantor Ordinal || <math>\varphi(2,0)=\zeta_0=\psi(\Omega^2)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)</math>
|-
|-
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>BMS(0,0)(1,1)(2,1)(3,0)</math>
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)=\psi(\Omega^\omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,0)</math>
|-
|-
| [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>BMS(0,0)(1,1)(2,1)(3,1)</math>
| [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)</math>
|-
|-
| [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>BMS(0,0)(1,1)(2,1)(3,1)(4,0)</math>
| [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,0)</math>
|-
|-
| [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math>|| <math>BMS(0,0)(1,1)(2,1)(3,1)(4,1)</math>
| [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,1)(3,1)(4,1)</math>
|-
|-
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>BMS(0,0)(1,1)(2,2)</math>
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>\mathrm{BMS}(0,0)(1,1)(2,2)</math>
|-
|-
| [[BO]]|| Buchholz's Ordinal || <math>\psi(\Omega_{\omega})</math>|| <math>BMS(0,0,0)(1,1,1)</math>
| [[BO]]|| Buchholz's Ordinal || <math>\psi(\Omega_{\omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)</math>
|-
|-
| [[TFBO]]|| Takeuti-Feferman-Buchholz Ordinal || <math>\psi(\Omega_{\omega+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)</math>
| [[TFBO]]|| Takeuti-Feferman-Buchholz Ordinal || <math>\psi(\Omega_{\omega+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,0)(3,2,0)</math>
|-
|-
| [[BIO]]|| Bird's Ordinal<ref>鸟之数阵第四版的极限是它,因此得名</ref>|| <math>\psi(\Omega_{\Omega})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)</math>
| [[BIO]]|| Bird's Ordinal<ref>鸟之数阵第四版的极限是它,因此得名</ref>|| <math>\psi(\Omega_{\Omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,0)</math>
|-
|-
| [[EBO]]|| Extended Buchholz Ordinal || <math>\psi(I)</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)</math>
| [[EBO]]|| Extended Buchholz Ordinal || <math>\psi(I)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)</math>
|-
|-
| [[JO]]|| Jager's Ordinal || <math>\psi(\Omega_{I+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)</math>
| [[JO]]|| Jager's Ordinal || <math>\psi(\Omega_{I+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)</math>
|-
|-
| [[SIO]]|| Small Inaccessible Ordinal || <math>\psi(I_{\omega})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)</math>
| [[SIO]]|| Small Inaccessible Ordinal || <math>\psi(I_{\omega})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)</math>
|-
|-
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math>
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))=\psi(M^\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math>
|-
|-
| [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\varepsilon_{M+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math>
| [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\varepsilon_{M+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math>
|-
|-
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math>
| [[SMO]]|| Small Mahlo Ordinal || <math>\psi(M_\omega)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)</math>
|-
|-
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\varepsilon_{K+1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
|-
|-
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(\Pi_{\omega})=\psi(a_2)</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,0)</math>
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(\Pi_{\omega})=\psi(a_2)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)</math>
|-
|-
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})=\psi(a_2^a)</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
|-
|-
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,1)</math>
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)</math>
|-
|-
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
|-
|-
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
|-
|-
| [[pLRO]]|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>BMS(0,0,0)(1,1,1)(2,2,2)</math>
| [[pLRO]]|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(\omega-\pi-\Pi_{0})=\psi(a_\omega) </math>|| <math>\mathrm{BMS}(0,0,0)(1,1,1)(2,2,2)</math>
|-
|-
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>BMS(0,0,0,0)(1,1,1,1)</math>
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)=\psi(\sigma S\times \omega)=\psi(H^\omega)</math>|| <math>\mathrm{BMS}(0,0,0,0)(1,1,1,1)</math>
|-
|-
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>BMS(0,0,0,0,0)(1,1,1,1,1)</math>
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>\mathrm{BMS}(0,0,0,0,0)(1,1,1,1,1)</math>
|-
|-
| SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math>
| SHO/BMO<ref name=":0">SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是<math>\varepsilon_0</math>,MHO指的是BMS极限。还有一个LHO指<math>\omega -Y</math>极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字</ref>|| Small Hydra Ordinal || <math>\psi(\psi_{H}(\varepsilon_{H+1}))?</math>|| <math>Y(1,3)=BMS\text{极限}</math>
第72行: 第72行:
| MHO/ωYO<ref name=":0" />|| Medium Hydra Ordinal || || <math>\omega-Y</math> 极限
| MHO/ωYO<ref name=":0" />|| Medium Hydra Ordinal || || <math>\omega-Y</math> 极限
|-
|-
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{CK}</math>
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{\rm CK}</math>
|-
|-
| [[FUO]] || First Uncountable Ordinal || <math>\omega_{1}</math>||
| [[FUO]] || First Uncountable Ordinal || <math>\omega_{1}</math>||
|}
|}

2025年7月4日 (五) 14:11的版本

本条目列举出一些有名字的序数,它们大多在 googology 中具有重大意义

需要注意的是,它们的命名很多来自 googology 爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF等) BMS/Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linar Array Ordinal[1] ωω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0)=ε0=ψ(Ω) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0)=ζ0=ψ(Ω2) BMS(0,0)(1,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0)=ψ(Ωω) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schutte Ordinal φ(1,0,0)=Γ0=ψ(ΩΩ) BMS(0,0)(1,1)(2,1)(3,1)
SVO Small Veblen Ordinal ψ(ΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(ΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
BHO Bachmann-Howard Ordinal ψ(Ω2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ωω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ωω+1) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(ΩΩ) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(ΩI+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(Iω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0))=ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
SRO Small Rathjen Ordinal ψ(εM+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
SMO Small Mahlo Ordinal ψ(Mω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)
RO Rathjen's Ordinal ψ(εK+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SSO Small Stegert Ordinal ψ(Πω)=ψ(a2) BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)Π0)=ψ(a2a) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
BGO TSS 1st Back Gear Ordinal[3] ψ(Π1λα.(Ωα+2)Π1) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(OFP aft α)Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
pLRO p.f.e.c. Large Rathjen Ordinal ψ(ωπΠ0)=ψ(aω) BMS(0,0,0)(1,1,1)(2,2,2)
TSSO Trio Sequence System Ordinal ψ(ωprojection)=ψ(σS×ω)=ψ(Hω) BMS(0,0,0,0)(1,1,1,1)
QSSO Quardo Sequence System Ordinal ψ(ψH(HHω))? BMS(0,0,0,0,0)(1,1,1,1,1)
SHO/BMO[4] Small Hydra Ordinal ψ(ψH(εH+1))? Y(1,3)=BMS极限
ΩSSO \Omega Sequence System Ordinal Y(1,3,4,2,5,8,10)
GHO No-Go Hydra Ordinal[5] Y(1,3,4,3)
SYO Small Yukito Ordinal ωY(1,4)
MHO/ωYO[4] Medium Hydra Ordinal ωY 极限
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1
  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名
  4. 4.0 4.1 SHO,MHO的名字均来自FataliS1024.但原定义的SHO指的是ε0,MHO指的是BMS极限。还有一个LHO指ωY极限。但后来不知为何变成了现在的这个版本,而LHO成为了无定义的名字
  5. 原名Guo bu qu de Hydra Ordinal,但过于口语化和非正式。而这个序数本身确实是一个重要的序数。曹知秋将名字改成了现在的版本