打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表:修订间差异

来自Googology Wiki
QWQ-bili留言 | 贡献
美化公式
Optimism留言 | 贡献
第18行: 第18行:
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)</math>|| <math>BMS(0,0)(1,1)(2,1)(3,0)</math>
| [[HCO]]|| Hyper Cantor Ordinal || <math>\varphi(\omega,0)</math>|| <math>BMS(0,0)(1,1)(2,1)(3,0)</math>
|-
|-
| [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)</math> || <math>BMS(0,0)(1,1)(2,1)(3,1)</math>
| [[FSO]]|| Feferman-Schutte Ordinal || <math>\varphi(1,0,0)</math>|| <math>BMS(0,0)(1,1)(2,1)(3,1)</math>
|-
|-
| [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math> || <math>BMS(0,0)(1,1)(2,1)(3,1)(4,0)</math>
| [[SVO]]|| Small Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\omega}})</math>|| <math>BMS(0,0)(1,1)(2,1)(3,1)(4,0)</math>
|-
|-
| [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math> || <math>BMS(0,0)(1,1)(2,1)(3,1)(4,1)</math>
| [[LVO]]|| Large Veblen Ordinal || <math>\psi(\Omega^{\Omega^{\Omega}})</math>|| <math>BMS(0,0)(1,1)(2,1)(3,1)(4,1)</math>
|-
|-
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math> || <math>BMS(0,0)(1,1)(2,2)</math>
| [[BHO]]|| Bachmann-Howard Ordinal || <math>\psi(\Omega_{2})</math>|| <math>BMS(0,0)(1,1)(2,2)</math>
|-
|-
| [[BO]]|| Buchholz's Ordinal || <math>\psi(\Omega_{\omega})</math> || <math>BMS(0,0,0)(1,1,1)</math>
| [[BO]]|| Buchholz's Ordinal || <math>\psi(\Omega_{\omega})</math>|| <math>BMS(0,0,0)(1,1,1)</math>
|-
|-
| [[TFBO]]|| Takeuti-Feferman-Buchholz Ordinal || <math>\psi(\Omega_{\omega+1})</math> || <math>BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)</math>
| [[TFBO]]|| Takeuti-Feferman-Buchholz Ordinal || <math>\psi(\Omega_{\omega+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)</math>
|-
|-
| [[BIO]]|| Bird's Ordinal<ref>鸟之数阵第四版的极限是它,因此得名</ref>|| <math>\psi(\Omega_{\Omega})</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)</math>
| [[BIO]]|| Bird's Ordinal<ref>鸟之数阵第四版的极限是它,因此得名</ref>|| <math>\psi(\Omega_{\Omega})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)</math>
|-
|-
| [[EBO]]|| Extended Buchholz Ordinal || <math>\psi(I)</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)</math>
| [[EBO]]|| Extended Buchholz Ordinal || <math>\psi(I)</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)</math>
|-
|-
| [[JO]]|| Jager's Ordinal || <math>\psi(\Omega_{I+1})</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)</math>
| [[JO]]|| Jager's Ordinal || <math>\psi(\Omega_{I+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)</math>
|-
|-
| [[SIO]]|| Small Inaccessible Ordinal || <math>\psi(I_{\omega})</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)</math>
| [[SIO]]|| Small Inaccessible Ordinal || <math>\psi(I_{\omega})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)</math>
|-
|-
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math>
| [[MBO]]|| Mutiply Buchholz Ordinal || <math>\psi(I(\omega,0))</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)</math>
|-
|-
| [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\Omega_{M+1})</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math>
| [[SRO]]|| Small Rathjen Ordinal || <math>\psi(\Omega_{M+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)</math>
|-
|-
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\Omega_{K+1})</math> || <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
| [[RO]]|| Rathjen's Ordinal || <math>\psi(\Omega_{K+1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)</math>
|-
|-
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(\Pi_{\omega})</math> || <math>BMS(0,0,0)(1,1,1)(2,2,0)</math>
| [[SSO]]|| Small Stegert Ordinal || <math>\psi(\Pi_{\omega})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,0)</math>
|-
|-
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})</math> || <math>BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
| [[LSO]]|| Large Stegert Ordinal || <math>\psi(\lambda\alpha.(\alpha\times 2)-\Pi_{0})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)</math>
|-
|-
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math> || <math>BMS(0,0,0)(1,1,1)(2,2,1)</math>
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| <math>\psi(\Pi_{1}-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_{1})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,1)</math>
|-
|-
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math> || <math>BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
| [[SDO]]|| Small Dropping Ordinal || <math>\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_{0})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)</math>
|-
|-
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math> || <math>BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
| [[LDO]]|| Large Dropping Ordinal || <math>\psi(\lambda\alpha.(\mathrm{OFP}\ \mathrm{aft}\ \alpha)-\Pi_{0})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)</math>
|-
|-
| [[pLRO]]|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(\omega-\pi-\Pi_{0})</math> || <math>BMS(0,0,0)(1,1,1)(2,2,2)</math>
| [[pLRO]]|| p.f.e.c. Large Rathjen Ordinal || <math>\psi(\omega-\pi-\Pi_{0})</math>|| <math>BMS(0,0,0)(1,1,1)(2,2,2)</math>
|-
|-
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)</math> || <math>BMS(0,0,0,0)(1,1,1,1)</math>
| [[TSSO]]|| Trio Sequence System Ordinal || <math>\psi(\omega-projection)</math>|| <math>BMS(0,0,0,0)(1,1,1,1)</math>
|-
|-
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math> || <math>BMS(0,0,0,0,0)(1,1,1,1,1)</math>
| [[QSSO]]|| Quardo Sequence System Ordinal || <math>\psi(\psi_{H}(H^{H^{\omega}}))?</math>|| <math>BMS(0,0,0,0,0)(1,1,1,1,1)</math>
|-
|-
| [[SHO]]|| Small Hydra Ordinal || <math>\psi(\psi_{H}(H\uparrow\uparrow\omega))?</math> || <math>Y(1,3)</math>
| [[SHO]]|| Small Hydra Ordinal || <math>\psi(\psi_{H}(H\uparrow\uparrow\omega))?</math>|| <math>Y(1,3)</math>
|-
|-
| [[\OmegaSSO]]|| \Omega Sequence System Ordinal || || <math>Y(1,3,4,2,5,8,10)</math>
| [[ΩSSO]]|| \Omega Sequence System Ordinal || || <math>Y(1,3,4,2,5,8,10)</math>
|-
|-
| [[GHO]]|| No-Go Hydra Ordinal || || <math>Y(1,3,4,3)</math>
| [[GHO]]|| No-Go Hydra Ordinal || || <math>Y(1,3,4,3)</math>
第72行: 第72行:
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{CK}</math>
| [[CKO]]|| Church-Kleene Ordinal || <math>\omega_{1}^{CK}</math>
|-
|-
| FUO || First Uncountable Ordinal || <math>\omega_{1}</math> ||  
| FUO || First Uncountable Ordinal || <math>\omega_{1}</math>||
|}
|}

2025年7月3日 (四) 22:05的版本

本条目列举出一些有名字的序数,它们大多在googology中具有重大意义

需要注意的是,它们的命名很多来自googology爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF等) BMS/Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linar Array Ordinal[1] ωω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0) BMS(0,0)(1,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schutte Ordinal φ(1,0,0) BMS(0,0)(1,1)(2,1)(3,1)
SVO Small Veblen Ordinal ψ(ΩΩω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(ΩΩΩ) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
BHO Bachmann-Howard Ordinal ψ(Ω2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ωω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ωω+1) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(ΩΩ) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(ΩI+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(Iω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
SRO Small Rathjen Ordinal ψ(ΩM+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
RO Rathjen's Ordinal ψ(ΩK+1) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SSO Small Stegert Ordinal ψ(Πω) BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)Π0) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
BGO TSS 1st Back Gear Ordinal[3] ψ(Π1λα.(Ωα+2)Π1) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(OFP aft α)Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
pLRO p.f.e.c. Large Rathjen Ordinal ψ(ωπΠ0) BMS(0,0,0)(1,1,1)(2,2,2)
TSSO Trio Sequence System Ordinal ψ(ωprojection) BMS(0,0,0,0)(1,1,1,1)
QSSO Quardo Sequence System Ordinal ψ(ψH(HHω))? BMS(0,0,0,0,0)(1,1,1,1,1)
SHO Small Hydra Ordinal ψ(ψH(Hω))? Y(1,3)
ΩSSO \Omega Sequence System Ordinal Y(1,3,4,2,5,8,10)
GHO No-Go Hydra Ordinal Y(1,3,4,3)
SYO Small Yukito Ordinal ωY(1,4)
MHO Medium Hydra Ordinal ωY 极限
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1
  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名