打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

序数表:修订间差异

来自Googology Wiki
Z留言 | 贡献
创建页面,内容为“本条目列举出一些有名字的序数,它们大多在googology中具有重大意义 需要注意的是,它们的命名很多来自googology爱好者而非专业数学研究者。 == 序数表 == {| class="wikitable" |+ |- ! 缩写 !! 英文全称 !! 常规表示方法(BOCF等) !! BMS/Y |- | FTO || First Transfinite Ordinal || ω || BMS(0)(1) |- | LAO || Linar Array Ordinal || ω^ω || BMS(0)(1)(2) |- | SCO || Small Cantor Ordinal || φ(1,0) || BMS…”
 
Z留言 | 贡献
无编辑摘要
第1行: 第1行:
本条目列举出一些有名字的[[序数]],它们大多在googology中具有重大意义
本条目列举出一些有名字的[[序数]],它们大多在googology中具有重大意义
需要注意的是,它们的命名很多来自googology爱好者而非专业数学研究者。
需要注意的是,它们的命名很多来自googology爱好者而非专业数学研究者。
== 序数表 ==
== 序数表 ==
第9行: 第10行:
| FTO || First Transfinite Ordinal || ω || BMS(0)(1)
| FTO || First Transfinite Ordinal || ω || BMS(0)(1)
|-
|-
| LAO || Linar Array Ordinal || ω^ω || BMS(0)(1)(2)
| LAO || Linar Array Ordinal<ref>因为在googology一度经典的线性数阵的极限是它,因此得名</ref>|| ω^ω || BMS(0)(1)(2)
|-
|-
| SCO || Small Cantor Ordinal || φ(1,0) || BMS(0,0)(1,1)
| [[SCO]]|| Small Cantor Ordinal || φ(1,0) || BMS(0,0)(1,1)
|-
|-
| CO || Cantor Ordinal || φ(2,0) || BMS(0,0)(1,1)(2,1)
| [[CO]]|| Cantor Ordinal || φ(2,0) || BMS(0,0)(1,1)(2,1)
|-
|-
| HCO || Hyper Cantor Ordinal || φ(ω,0) || BMS(0,0)(1,1)(2,1)(3,0)
| [[HCO]]|| Hyper Cantor Ordinal || φ(ω,0) || BMS(0,0)(1,1)(2,1)(3,0)
|-
|-
| FSO || Feferman-Schutte Ordinal || φ(1,0,0) || BMS(0,0)(1,1)(2,1)(3,1)
| [[FSO]]|| Feferman-Schutte Ordinal || φ(1,0,0) || BMS(0,0)(1,1)(2,1)(3,1)
|-
|-
| SVO || Small Veblen Ordinal || ψ(Ω^Ω^ω) || BMS(0,0)(1,1)(2,1)(3,1)(4,0)
| [[SVO]]|| Small Veblen Ordinal || ψ(Ω^Ω^ω) || BMS(0,0)(1,1)(2,1)(3,1)(4,0)
|-
|-
| LVO || Large Veblen Ordinal || ψ(Ω^Ω^Ω) || BMS(0,0)(1,1)(2,1)(3,1)(4,1)
| [[LVO]]|| Large Veblen Ordinal || ψ(Ω^Ω^Ω) || BMS(0,0)(1,1)(2,1)(3,1)(4,1)
|-
|-
| BHO || Bachmann-Howard Ordinal || ψ(Ω_2) || BMS(0,0)(1,1)(2,2)
| [[BHO]]|| Bachmann-Howard Ordinal || ψ(Ω_2) || BMS(0,0)(1,1)(2,2)
|-
|-
| BO || Buchholz's Ordinal || ψ(Ω_ω) || BMS(0,0,0)(1,1,1)
| [[BO]]|| Buchholz's Ordinal || ψ(Ω_ω) || BMS(0,0,0)(1,1,1)
|-
|-
| TFBO || Takeuti-Feferman-Buchholz Ordinal || ψ(Ω_(ω+1)) || BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
| [[TFBO]]|| Takeuti-Feferman-Buchholz Ordinal || ψ(Ω_(ω+1)) || BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
|-
|-
| BIO || Bird's Ordinal || ψ(Ω_Ω) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
| [[BIO]]|| Bird's Ordinal<ref>鸟之数阵第四版的极限是它,因此得名</ref>|| ψ(Ω_Ω) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
|-
|-
| EBO || Extended Buchholz Ordinal || ψ(I) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
| [[EBO]]|| Extended Buchholz Ordinal || ψ(I) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
|-
|-
| JO || Jager's Ordinal || ψ(Ω_(I+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
| [[JO]]|| Jager's Ordinal || ψ(Ω_(I+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
|-
|-
| SIO || Small Inaccessible Ordinal || ψ(I_ω) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
| [[SIO]]|| Small Inaccessible Ordinal || ψ(I_ω) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
|-
|-
| MBO || Mutiply Buchholz Ordinal || ψ(I(ω,0)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
| [[MBO]]|| Mutiply Buchholz Ordinal || ψ(I(ω,0)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
|-
|-
| SRO || Small Rathjen Ordinal || ψ(Ω_(M+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
| [[SRO]]|| Small Rathjen Ordinal || ψ(Ω_(M+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
|-
|-
| RO || Rathjen's Ordinal || ψ(Ω_(K+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
| [[RO]]|| Rathjen's Ordinal || ψ(Ω_(K+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
|-
|-
| DO || Duchhart's Ordinal || ψ(Ω_(κ+1)) || BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,0)(6,2,0)
| [[SSO]]|| Small Stegert Ordinal || ψ(Π_ω) || BMS(0,0,0)(1,1,1)(2,2,0)
|-
|-
| SSO || Small Stegert Ordinal || ψ(Π_ω) || BMS(0,0,0)(1,1,1)(2,2,0)
| [[LSO]]|| Large Stegert Ordinal || ψ(λα.(α×2)-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
|-
|-
| LSO || Large Stegert Ordinal || ψ(λα.(α×2)-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
| [[BGO]]|| TSS 1st Back Gear Ordinal<ref>Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名</ref>|| ψ(Π<sub>1</sub>-λα.(Ω<sub>α+2</sub>)-Π<sub>1</sub>) || BMS(0,0,0)(1,1,1)(2,2,1)
|-
|-
| BGO || TSS 1st Back Gear Ordinal || ψ(Π<sub>1</sub>-λα.(Ω<sub>α+2</sub>)-Π<sub>1</sub>) || BMS(0,0,0)(1,1,1)(2,2,1)
| [[SDO]]|| Small Dropping Ordinal || ψ(λα.(Ω<sub>α+ω</sub>)-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
|-
|-
| SDO || Small Dropping Ordinal || ψ(λα.(Ω<sub>α+ω</sub>)-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
| [[LDO]]|| Large Dropping Ordinal || ψ(λα.(OFP aft α)-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
|-
|-
| LDO || Large Dropping Ordinal || ψ(λα.(OFP aft α)-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
| [[pLRO]]|| p.f.e.c. Large Rathjen Ordinal || ψ(ω-π-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,2)
|-
|-
| pLRO || p.f.e.c. Large Rathjen Ordinal || ψ(ω-π-Π<sub>0</sub>) || BMS(0,0,0)(1,1,1)(2,2,2)
| [[TSSO]]|| Trio Sequence System Ordinal || ψ(ω-projection) || BMS(0,0,0,0)(1,1,1,1)
|-
|-
| TSSO || Trio Sequence System Ordinal || ψ(ω-projection) || BMS(0,0,0,0)(1,1,1,1)
| [[QSSO]]|| Quardo Sequence System Ordinal || ψ(ψ<sub>H</sub>(H^H^ω))? || BMS(0,0,0,0,0)(1,1,1,1,1)
|-
|-
| QSSO || Quardo Sequence System Ordinal || ψ(ψ<sub>H</sub>(H^H^ω))? || BMS(0,0,0,0,0)(1,1,1,1,1)
| [[SHO]]|| Small Hydra Ordinal || ψ(ψ<sub>H</sub>(H^^ω))? || Y(1,3)
|-
|-
| SHO || Small Hydra Ordinal || ψ(ψ<sub>H</sub>(H^^ω))? || Y(1,3)
| [[ΩSSO]]|| Ω Sequence System Ordinal || || Y(1,3,4,2,5,8,10)
|-
|-
| ΩSSO || Ω Sequence System Ordinal || || Y(1,3,4,2,5,8,10)
| [[GHO]]|| No-Go Hydra Ordinal || || Y(1,3,4,3)
|-
|-
| GHO || No-Go Hydra Ordinal || || Y(1,3,4,3)
| [[SYO]]|| Small Yukito Ordinal || || ω-Y(1,4)
|-
|-
| SYO || Small Yukito Ordinal || || ω-Y(1,4)
| [[MHO]]|| Medium Hydra Ordinal || || ω-Y极限
|-
|-
| MHO || Medium Hydra Ordinal || || ω-Y极限
| [[CKO]]|| Church-Kleene Ordinal || ω<sub>1</sub><sup>CK</sup>||
|-
| CKO || Church-Kleene Ordinal || ω<sub>1</sub><sup>CK</sup> ||  
|-
|-
| FUO || First Uncountable Ordinal || ω<sub>1</sub> ||  
| FUO || First Uncountable Ordinal || ω<sub>1</sub> ||  
|}
|}

2025年7月2日 (三) 22:45的版本

本条目列举出一些有名字的序数,它们大多在googology中具有重大意义

需要注意的是,它们的命名很多来自googology爱好者而非专业数学研究者。

序数表

缩写 英文全称 常规表示方法(BOCF等) BMS/Y
FTO First Transfinite Ordinal ω BMS(0)(1)
LAO Linar Array Ordinal[1] ω^ω BMS(0)(1)(2)
SCO Small Cantor Ordinal φ(1,0) BMS(0,0)(1,1)
CO Cantor Ordinal φ(2,0) BMS(0,0)(1,1)(2,1)
HCO Hyper Cantor Ordinal φ(ω,0) BMS(0,0)(1,1)(2,1)(3,0)
FSO Feferman-Schutte Ordinal φ(1,0,0) BMS(0,0)(1,1)(2,1)(3,1)
SVO Small Veblen Ordinal ψ(Ω^Ω^ω) BMS(0,0)(1,1)(2,1)(3,1)(4,0)
LVO Large Veblen Ordinal ψ(Ω^Ω^Ω) BMS(0,0)(1,1)(2,1)(3,1)(4,1)
BHO Bachmann-Howard Ordinal ψ(Ω_2) BMS(0,0)(1,1)(2,2)
BO Buchholz's Ordinal ψ(Ω_ω) BMS(0,0,0)(1,1,1)
TFBO Takeuti-Feferman-Buchholz Ordinal ψ(Ω_(ω+1)) BMS(0,0,0)(1,1,1)(2,1,0)(3,2,0)
BIO Bird's Ordinal[2] ψ(Ω_Ω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)
EBO Extended Buchholz Ordinal ψ(I) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)
JO Jager's Ordinal ψ(Ω_(I+1)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,0)(4,2,0)
SIO Small Inaccessible Ordinal ψ(I_ω) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)
MBO Mutiply Buchholz Ordinal ψ(I(ω,0)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,0,0)
SRO Small Rathjen Ordinal ψ(Ω_(M+1)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(3,1,0)(4,2,0)
RO Rathjen's Ordinal ψ(Ω_(K+1)) BMS(0,0,0)(1,1,1)(2,1,1)(3,1,1)(4,1,0)(5,2,0)
SSO Small Stegert Ordinal ψ(Π_ω) BMS(0,0,0)(1,1,1)(2,2,0)
LSO Large Stegert Ordinal ψ(λα.(α×2)-Π0) BMS(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)
BGO TSS 1st Back Gear Ordinal[3] ψ(Π1-λα.(Ωα+2)-Π1) BMS(0,0,0)(1,1,1)(2,2,1)
SDO Small Dropping Ordinal ψ(λα.(Ωα+ω)-Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,0,0)
LDO Large Dropping Ordinal ψ(λα.(OFP aft α)-Π0) BMS(0,0,0)(1,1,1)(2,2,1)(3,2,0)
pLRO p.f.e.c. Large Rathjen Ordinal ψ(ω-π-Π0) BMS(0,0,0)(1,1,1)(2,2,2)
TSSO Trio Sequence System Ordinal ψ(ω-projection) BMS(0,0,0,0)(1,1,1,1)
QSSO Quardo Sequence System Ordinal ψ(ψH(H^H^ω))? BMS(0,0,0,0,0)(1,1,1,1,1)
SHO Small Hydra Ordinal ψ(ψH(H^^ω))? Y(1,3)
ΩSSO Ω Sequence System Ordinal Y(1,3,4,2,5,8,10)
GHO No-Go Hydra Ordinal Y(1,3,4,3)
SYO Small Yukito Ordinal ω-Y(1,4)
MHO Medium Hydra Ordinal ω-Y极限
CKO Church-Kleene Ordinal ω1CK
FUO First Uncountable Ordinal ω1
  1. 因为在googology一度经典的线性数阵的极限是它,因此得名
  2. 鸟之数阵第四版的极限是它,因此得名
  3. Bashicu对BGO的原定义是BMS(0,0,0)(1,1,1)(2,2,0)。BGO指(0,0,0)(1,1,1)(2,2,1)是中文googology社区的重命名