|
|
(未显示2个用户的7个中间版本) |
第1行: |
第1行: |
| 本条目展示[[BHM]]的强度的列表分析 | | 本条目展示 [[BHM]] 的强度的列表分析。这些分析来自梅天狸。 |
|
| |
|
| === 1. === | | == 第一部分:0~[[FSO]] == |
| {| class="wikitable"
| | 主词条:[[BHM分析Part1:0~FSO]] |
| |+
| |
| !BHM
| |
| !
| |
| !
| |
| !
| |
| |-
| |
| |<math>(0)</math>
| |
| |<math>1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(0)</math>
| |
| |<math>2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(0)(0)</math>
| |
| |<math>3</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)</math>
| |
| |<math>\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)</math>
| |
| |<math>\omega +1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(0)</math>
| |
| |<math>\omega +2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(0)(1)</math>
| |
| |<math>\omega \times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(0)(1)(0)</math>
| |
| |<math>\omega \times 2 +1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(0)(1)(0)(0)(1)</math>
| |
| |<math>\omega \times 3</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)</math>
| |
| |<math>\omega ^2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)(0)</math>
| |
| |<math>\omega ^2+1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)(0)(0)(1)</math>
| |
| |<math>\omega ^2+\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)(0)(0)(1)(0)(0)(1)</math>
| |
| |<math>\omega ^2+\omega\times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)</math>
| |
| |<math>\omega ^2\times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)(0)(0)(1)</math>
| |
| |<math>\omega ^2\times 2 + \omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(0)(1)(0)(1)</math>
| |
| |<math>\omega ^3</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)</math>
| |
| |<math>\omega ^\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)</math>
| |
| |<math>\omega ^\omega+1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(0)(1)</math>
| |
| |<math>\omega ^\omega+\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(0)(1)(0)(1)</math>
| |
| |<math>\omega ^\omega+\omega\times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(0)(1)(1)</math>
| |
| |<math>\omega ^\omega \times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)</math>
| |
| |<math>\omega ^{\omega +1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(0)(1)</math>
| |
| |<math>\omega ^{\omega +1}+\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega +1}+\omega^{\omega}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)(0)(1)</math>
| |
| |<math>\omega ^{\omega +1}\times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(1)</math>
| |
| |<math>\omega ^{\omega +2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega \times 2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)</math>
| |
| |<math>\omega ^{\omega \times 2+1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega \times 3}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^2+\omega}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^2\times 2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(0)(1)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^3}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^\omega}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(1)(0)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^{\omega+1}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^{\omega\times 2}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(1)(0)(1)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^{\omega^2}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(1)(1)(1)</math>
| |
| |<math>\omega ^{\omega ^{\omega^\omega}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)</math>
| |
| |<math>\varepsilon_0</math>
| |
| |
| |
| |
| |
| |}
| |
|
| |
|
| === 2. === | | == 第二部分:FSO~[[BO]] == |
| {| class="wikitable"
| | 主词条:[[BHM分析Part2:FSO~ψ(Ω_2^Ω)]]、[[BHM分析Part3:ψ(Ω 2^Ω)~BO]] |
| |+
| | |
| !BHM
| | == 第三部分:BO~[[SRO]] == |
| !
| | 主词条:[[BHM分析Part4:BO~ψ(I)]]、[[BHM分析Part5:ψ(I)~SRO]] |
| !
| | |
| !
| | == 第四部分:SRO~BHM(0,0)(1,1)(1,1) == |
| |-
| | 主词条:[[BHM分析Part6]]、[[BHM分析Part7]] |
| |<math>(0)(1)(2)(0)(0)(1)</math>
| | |
| |<math>\varepsilon_0 + \omega</math>
| | == 第五部分:BHM(0,0)(1,1)(1,1)~[[SMO]] == |
| |
| | 主词条:[[BHM分析Part8]]、[[BHM分析Part9]]、[[BHM分析Part10]] |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(0)(1)(1)</math>
| |
| |<math>\varepsilon_0 +\omega^2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 \times 2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)</math>
| |
| |<math>\varepsilon_0 \times \omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(0)(1)(1)</math>
| |
| |<math>\varepsilon_0 \times \omega^\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 ^2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 ^3</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)</math>
| |
| |<math>\varepsilon_0 ^\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 ^{\omega+1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)(0)(1)(1)</math>
| |
| |<math>\varepsilon_0 ^{\omega\times 2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)</math>
| |
| |<math>\varepsilon_0 ^{\omega^2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)(1)</math>
| |
| |<math>\varepsilon_0 ^{\omega^\omega}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 ^{\varepsilon_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(1)</math>
| |
| |<math>\varepsilon_0 ^{\varepsilon_0\times \omega}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 ^{\varepsilon_0^2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(1)(1)</math>
| |
| |<math>\varepsilon_0 ^{\varepsilon_0^\omega}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(1)(1)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_0 ^{\varepsilon_0^{\varepsilon_0}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_1 </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)</math>
| |
| |<math>\varepsilon_1 \times \omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_1 \times \varepsilon_0</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_1 \times \varepsilon_0^{\varepsilon_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_1 ^2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)</math>
| |
| |<math>\varepsilon_1 ^\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_1 ^{\varepsilon_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_1 ^{\varepsilon_1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(0)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)</math>
| |
| |<math>\varepsilon_\omega </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(0)(1)(2)</math>
| |
| |<math>\varepsilon_{\omega +1} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(0)(1)(2)(0)(1)(2)(1)</math>
| |
| |<math>\varepsilon_{\omega \times 2} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(0)(1)(2)(1)</math>
| |
| |<math>\varepsilon_{\omega ^2} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)</math>
| |
| |<math>\varepsilon_{\omega ^\omega} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\varepsilon_0} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)</math>
| |
| |<math>\varepsilon_{\varepsilon_0 \times \omega} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\varepsilon_0 ^2} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)</math>
| |
| |<math>\varepsilon_{\varepsilon_0 ^ \omega} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\varepsilon_0 ^ {\varepsilon_0}} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\varepsilon_1} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(1)</math>
| |
| |<math>\varepsilon_{\varepsilon_\omega} </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_0 </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_0 </math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(0)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_0 ^2</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(1)</math>
| |
| |<math>\zeta_0 ^\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(1)(0)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_0 ^{\zeta_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_{\zeta_0 +1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_{\zeta_0 +1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)(0)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\zeta_0 +\varepsilon_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)</math>
| |
| |<math>\varepsilon_{\zeta_0 \times \omega}</math>
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(2)</math>
| |
| |<math>\varepsilon_{\zeta_0 ^2}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(2)</math>
| |
| |<math>\varepsilon_{\zeta_0 ^{\zeta_0}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(2)</math>
| |
| |<math>\varepsilon_{\varepsilon_{\zeta_0 +1}}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)</math>
| |
| |<math>\zeta_\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(1)(2)</math>
| |
| |<math>\zeta_{\varepsilon_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_{\zeta_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)</math>
| |
| |<math>\eta_0</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)</math>
| |
| |<math>\varepsilon_{\eta_0+1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math>
| |
| |<math>\zeta_{\eta_0+1}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)(1)(2)</math>
| |
| |<math>\eta_1</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)(1)</math>
| |
| |<math>\eta_\omega</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)(1)(1)(2)(1)(2)(1)(2)</math>
| |
| |<math>\eta_{\eta_0}</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(1)(2)(1)(2)(1)(2)</math>
| |
| |<math>\varphi(4,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)</math>
| |
| |<math>\varphi(\omega,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(0)(1)(2)</math>
| |
| |<math>\varphi(1,\varphi(\omega,0)+1)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(0)(1)(2)(2)</math>
| |
| |<math>\varphi(\omega,1)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(1)</math>
| |
| |<math>\varphi(\omega,\omega)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(1)(1)(2)</math>
| |
| |<math>\varphi(\omega,\varepsilon_0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(1)(1)(2)(1)(2)(2)</math>
| |
| |<math>\varphi(\omega,\varphi(\omega,0))</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(1)(2)</math>
| |
| |<math>\varphi(\omega+1,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(1)(2)(1)(2)(2)</math>
| |
| |<math>\varphi(\omega\times 2,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(1)(2)(2)</math>
| |
| |<math>\varphi(\omega^2,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(2)(2)</math>
| |
| |<math>\varphi(\omega^\omega,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(3)</math>
| |
| |<math>\varphi(\varepsilon_0,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(3)(1)(2)(3)</math>
| |
| |<math>\varphi(\varepsilon_1,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(3)(2)(3)</math>
| |
| |<math>\varphi(\zeta_0,0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(3)(3)</math>
| |
| |<math>\varphi(\varphi(\omega,0),0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0)(1)(2)(3)(4)</math>
| |
| |<math>\varphi(\varphi(\varepsilon_0,0),0)</math>
| |
| |
| |
| |
| |
| |-
| |
| |<math>(0,0)(1,1)</math>
| |
| |<math>\varphi(1,0,0)</math>
| |
| |
| |
| |
| |
| |}
| |
| [[分类:分析]] | | [[分类:分析]] |