稳定序数有如下路径:
是 onto {稳定到}的最小成员
是 onto {稳定到})的最小成员
是{稳定到} onto {稳定到}的最小成员,其中是满足稳定到的最小序数
是{稳定到} onto {稳定到}的最小成员,其中是上一条中的
是{稳定到} onto {稳定到}的最小成员
是 onto {稳定到}的最小成员
是{稳定到} onto {稳定到}的最小成员
是{稳定到} onto {稳定到}的最小成员,其中是最小的是
是{稳定到} onto {稳定到}的最小成员
是-反射
稳定到
稳定到
稳定到
稳定到,且稳定到,则是首个大于序数满足稳定到
稳定到稳定到,且是-反射
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到稳定到,对
稳定到稳定到,对于和,则L_{\gamma}</math>是 onto {稳定到}的最小成员
稳定到,其中是 onto onto {稳定到}的最小成员
稳定到,其中是 onto {稳定到})的最小成员
稳定到,其中是{稳定到} onto {稳定到})的最小成员
稳定到,其中是 onto {稳定到}的最小成员
稳定到,其中是{稳定到} onto {稳定到}的最小成员
稳定到,其中是-反射
稳定到稳定到
稳定到稳定到
稳定到稳定到
稳定到稳定到稳定到
稳定到,对,则是-ply,常规稳定链的终点,在此后需要涉及更高阶的反射
Racheline 证明 BMS 良序的文章中,给出了 BMS 到 -稳定的一个单射。
我们把 BMS 中第 n 行的父项关系记作 <n,每个列当成一个单独的序数。如此翻译,就得到了一个 稳定的表达式。
如 ,(0,0) 记作 α,(1,1) 记作 β,注意到第一行上 ,第二行上 ,翻译过来可只写。
又如 翻译成 。
又如 ,翻译成 。
又如 ,翻译为 。其中属于关系对应的是 BMS 对应项的位置,然后 a 稳定到 b 暗含 a 属于 b。
注意并非满射。如 在稳定中标准而在 BMS 中是 不标准。