|
|
(未显示5个用户的15个中间版本) |
第1行: |
第1行: |
| 目前使用的OCF为M型,后续补充BOCF
| | 本条目展示的分析来自最菜萌新 |
|
| |
|
| ==== 1:单行BMS(PrSS) ==== | | == Part 1:0~[[BO]] == |
| <math>\varnothing=0</math>
| | 主词条:[[BMS分析Part1:0~BO|BMS分析Part1:0~BO]] |
|
| |
|
| <math>(0)=1</math>
| | 这个部分的BMS行为较为简单。 |
|
| |
|
| <math>(0)(0)=2</math>
| | == Part 2:[[BO]]~[[EBO]] == |
| | 由于提升效应的出现,三行之后 BMS 的行为复杂度急剧上升。 |
|
| |
|
| <math>(0)(0)(0)=3</math>
| | 主词条:[[BMS分析Part2:BO~EBO]] |
|
| |
|
| <math>(0)(1)=(0)(0)(0)(0)(0)...=\omega</math>
| | == Part 3:EBO~[[SSO]] == |
| | 在这里,我们将正式引入[[投影序数]]。 |
|
| |
|
| <math>(0)(1)(0)=\omega+1</math>
| | 主词条:[[BMS分析Part3:EBO~SSO]] |
|
| |
|
| <math>(0)(1)(0)(0)=\omega+2</math>
| | == Part4:SSO~[[LRO|pLRO]] == |
| | 在我们的努力之下,一个“升级版”的BO浮出了水面。 |
|
| |
|
| <math>(0)(1)(0)(1)=\omega\times2</math>
| | 主词条:[[BMS分析Part4:SSO~pLRO]] |
|
| |
|
| <math>(0)(1)(0)(1)(0)(1)=\omega\times3</math>
| | == Part5:pLRO~TSSO == |
| | 在投影序数的助力下,我们抵达了三行BMS的终点,抵达了可怕与不可怕的分界点。 |
|
| |
|
| <math>(0)(1)(1)=(0)(1)(0)(1)(0)(1)...=\omega^2</math>
| | 主词条:[[BMS分析Part5:pLRO~TSSO]] |
|
| |
|
| <math>(0)(1)(1)(0)=\omega^2+1</math> | | == Part6:TSSO~SHO == |
| | [[向上投影]]为我们揭示了BMS的<math>\varepsilon_0</math>结构 |
|
| |
|
| <math>(0)(1)(1)(0)(1)=\omega^2+\omega</math>
| | 主词条:[[BMS分析Part6]]、[[BMS分析Part7]] |
|
| |
|
| <math>(0)(1)(1)(0)(1)(0)(1)=\omega^2+\omega\times2</math>
| |
|
| |
| <math>(0)(1)(1)(0)(1)(1)=\omega^2\times2</math>
| |
|
| |
| <math>(0)(1)(1)(0)(1)(1)(0)(1)=\omega^2\times2+\omega</math>
| |
|
| |
| <math>(0)(1)(1)(0)(1)(1)(0)(1)(1)=\omega^2\times3</math>
| |
|
| |
| <math>(0)(1)(1)(1)=\omega^3</math>
| |
|
| |
| <math>(0)(1)(1)(1)(1)=\omega^4</math>
| |
|
| |
| <math>(0)(1)(2)=(0)(1)(1)(1)(1)...=\omega^\omega</math>
| |
|
| |
| <math>(0)(1)(2)(0)(1)(2)=\omega^\omega\times2</math>
| |
|
| |
| <math>(0)(1)(2)(1)=\omega^{\omega+1}</math>
| |
|
| |
| <math>(0)(1)(2)(1)(1)=\omega^{\omega+2}</math>
| |
|
| |
| <math>(0)(1)(2)(1)(1)(1)=\omega^{\omega+3}</math>
| |
|
| |
| <math>(0)(1)(2)(1)(2)=\omega^{\omega\times2}</math>
| |
|
| |
| <math>(0)(1)(2)(1)(2)(1)(2)=\omega^{\omega\times3}</math>
| |
|
| |
| <math>(0)(1)(2)(2)=\omega^{\omega^2}</math>
| |
|
| |
| <math>(0)(1)(2)(2)(1)=\omega^{\omega^2+1}</math>
| |
|
| |
| <math>(0)(1)(2)(2)(1)(2)=\omega^{\omega^2+\omega}</math>
| |
|
| |
| <math>(0)(1)(2)(2)(1)(2)(2)=\omega^{\omega^2\times2}</math>
| |
|
| |
| <math>(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)=\omega^{\omega^2\times3}</math>
| |
|
| |
| <math>(0)(1)(2)(2)(2)=\omega^{\omega^3}</math>
| |
|
| |
| <math>(0)(1)(2)(2)(2)(2)=\omega^{\omega^4}</math>
| |
|
| |
| <math>(0)(1)(2)(3)=(0)(1)(2)(2)(2)(2)...=\omega^{\omega^\omega}</math>
| |
|
| |
| <math>(0)(1)(2)(3)(4)=\omega^{\omega^{\omega^\omega}}</math>
| |
|
| |
| <math>(0)(1)(2)(3)(4)(5)=\omega^{\omega^{\omega^{\omega^\omega}}}</math>
| |
|
| |
| <math>(0)(1,1)=(0)(1)(2)(3)(4)(5)(6)...=\varepsilon_0</math>
| |
|
| |
| ==== 2:双行BMS ====
| |
| <math>(0)(1,1)=\varepsilon_0</math>
| |
|
| |
| <math>(0)(1,1)(0,0)=\varepsilon_0+1</math>
| |
|
| |
| <math>(0)(1,1)(0,0)(1,0)=\varepsilon_0+\omega</math>
| |
|
| |
| <math>(0)(1,1)(0,0)(1,1)=\varepsilon_0\times2</math>
| |
|
| |
| <math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)=\varepsilon_0\times3</math>
| |
|
| |
| <math>(0)(1,1)(1,0)=\varepsilon_0\times\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(1,0)=\varepsilon_0\times\omega^2</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,0)=\varepsilon_0\times\omega^\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,0)(3,0)=\varepsilon_0\times\omega^{\omega^\omega}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)=\varepsilon_0^2</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)=\varepsilon_0^2\times\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)=\varepsilon_0^2\times\omega^\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^3</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^4</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)=\varepsilon_0^\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)=\varepsilon_0^{\omega+1}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^{\omega+2}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times2}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times3}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)=\varepsilon_0^{\omega^2}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)=\varepsilon_0^{\omega^\omega}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)=\varepsilon_0^{\omega^{\omega^\omega}}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_0^{\varepsilon_0}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math>
| |
|
| |
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math>
| |
|
| |
| <math>(0)(1,1)(1,1)=\varepsilon_1</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)=\varepsilon_1\times2</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)=\varepsilon_1\times\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)=\varepsilon_1\times\varepsilon_0</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_1\times\varepsilon_0^2</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)=\varepsilon_1^2</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)=\varepsilon_1^\omega</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)=\varepsilon_1^{\varepsilon_0}</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math>
| |
|
| |
| <math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math>
| |
|
| |
| <math>(0)(1,1)(2,0)=\varepsilon_\omega</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)=\varepsilon_\omega\times\omega</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)(2,1)=\varepsilon_\omega\times\varepsilon_0</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)=\varepsilon_\omega^2</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)=\varepsilon_\omega^{\varepsilon_\omega}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,1)=\varepsilon_{\omega+1}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,1)(1,1)=\varepsilon_{\omega+2}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times2}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times3}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(2,0)=\varepsilon_{\omega^2}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(2,0)(2,0)=\varepsilon_{\omega^3}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,0)=\varepsilon_{\omega^\omega}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,0)(4,0)=\varepsilon_{\omega^{\omega^\omega}}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,1)=\varepsilon_{\varepsilon_0}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,1)(4,0)=\varepsilon_{\varepsilon_\omega}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
| |
|
| |
| <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)=\zeta_0</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)=\zeta_0^2</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)=\zeta_0^{\zeta_0}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_0+\omega}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_1+\omega}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,0)=\zeta_\omega</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,0)(2,0)=\zeta_{\omega^2}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,0)(3,1)=\zeta_{\varepsilon_0}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)=\zeta_{\zeta_0}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)=\eta_0</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(1,1)=\varepsilon_{\eta_0+1}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(2,0)=\eta_\omega</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)=\varphi(\omega,0)=\psi(\Omega^\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(2,0)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(3,0)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,1)=\Gamma_1=\psi(\Omega^\Omega\times2)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,0)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(3,0)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(4,0)=\psi(\Omega^{\Omega^\omega})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math>
| |
|
| |
| <math>(0)(1,1)(2,1)(3,1)(4,1)(5,1)=\psi(\Omega^{\Omega^{\Omega^\Omega}})</math>
| |
|
| |
| <math>(0)(1,1)(2,2)=\psi(\psi_1(0))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(1,1)=\psi(\psi_1(0)+1)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(1,1)(2,1)=\psi(\psi_1(0)+\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(1,1)(2,1)(3,1)=\psi(\psi_1(0)+\Omega^\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(1,1)(2,2)=\psi(\psi_1(0)\times2)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,0)=\psi(\psi_1(0)\times\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,1)=\psi(\psi_1(0)\times\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,1)(3,0)=\psi(\psi_1(0)\times\Omega^\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,1)(3,1)=\psi(\psi_1(0)\times\Omega^\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,1)(3,2)=\psi(\psi_1(0)^2)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,1)(3,2)(3,0)=\psi(\psi_1(0)^\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)=\psi(\psi_1(0)^{\psi_1(0)})</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(2,2)=\psi(\psi_1(1))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,0)=\psi(\psi_1(\omega))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,1)(4,2)=\psi(\psi_1(\psi_1(0)))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)=\psi(\Omega_2)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(1,1)=\psi(\Omega_2+\Omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)=\psi(\Omega_2+\psi_1(0))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2)=\psi(\Omega_2+\psi_1(\psi_1(0)))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2)=\psi(\Omega_2+\psi_1(\Omega_2))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,0)=\psi(\Omega_2+\psi_1(\Omega_2)\times\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)=\psi(\Omega_2+\psi_1(\Omega_2)^2)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2)^\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)=\psi(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)})</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)=\psi(\Omega_2+\psi_1(\Omega_2+1))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2+\omega))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)\times\omega))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^\omega))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)}))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+1)))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\omega)))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2))))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,2)=\psi(\Omega_2\times2)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(3,0)=\psi(\Omega_2\times\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2)=\psi(\Omega_2\times\psi_1(\Omega_2))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(3,2)=\psi(\Omega_2^2)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(4,0)=\psi(\Omega_2^\omega)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,2)(4,2)=\psi(\Omega_2^{\Omega_2})</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,3)=\psi(\psi_2(0))</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,3)(4,3)=\psi(\Omega_3)</math>
| |
|
| |
| <math>(0)(1,1)(2,2)(3,3)(4,4)=\psi(\psi_3(0))</math>
| |
|
| |
| <math>(0)(1,1,1)=(0)(1,1)(2,2)(3,3)\cdots=\psi(\Omega_\omega)</math>
| |
|
| |
| ==== 3:三行BMS (0)(1,1,1)~(0)(1,1,1)(2,1,0) ====
| |
| 三行之后BMS的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。
| |
|
| |
| <math>(0)(1,1,1)=\psi(\Omega_\omega)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)=\psi(\Omega_\omega+1)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,0,0)=\psi(\Omega_\omega+\omega)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,1,0)=\psi(\Omega_\omega+\Omega)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)=\psi(\Omega_\omega+\psi_1(0))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(2,2,0)=\psi(\Omega_\omega+\psi_1(1))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\omega))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\psi_1(0)))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_2)\times\omega)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,1,0)=\psi(\Omega_\omega+\psi_1(\Omega_2)^\omega)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2+1))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_2+\omega))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2+\psi_1(0)))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2\times2))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_2\times\omega))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2^2))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_2^{\Omega_2}))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)=\psi(\Omega_\omega+\psi_1(\psi_2(0)))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)(4,4,0)=\psi(\Omega_\omega+\psi_1(\psi_3(0)))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)=\psi(\Omega_\omega+\psi_1(\Omega_\omega))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+1))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,0,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\omega))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(0)))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)(5,3,0)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\psi_2(0))))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,1)=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\Omega_\omega)))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0)=\psi(\Omega_\omega+\Omega_2)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,0)=\psi(\Omega_\omega+\psi_2(0))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0)=\psi(\Omega_\omega+\Omega_3)</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,4,0)=\psi(\Omega_\omega+\psi_3(0))</math>
| |
|
| |
| <math>(0)(1,1,1)(1,1,1)=\psi(\Omega_\omega\times2)</math>
| |
|
| |
| <math>(0)(1,1,1)(2,0,0)=\psi(\Omega_\omega\times\omega)</math>
| |
|
| |
| <math>(0)(1,1,1)(2,1,0)=\psi(\Omega_\omega\times\Omega)</math>
| |
| [[分类:分析]] | | [[分类:分析]] |