|
|
| (未显示另一用户的1个中间版本) |
| 第201行: |
第201行: |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}+a)</math> | | |<math>\psi_a(\Omega_{a+1}+a)</math> |
| |<math>(1-)^a~aft~2</math> | | |<math>(1-)^a~aft~2nd~2</math> |
| |<math>\psi_2(\Omega_3)</math> | | |<math>\psi_2(\Omega_3)</math> |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}+a^a)</math> | | |<math>\psi_a(\Omega_{a+1}+a^a)</math> |
| |<math>(1-)^{a^2}~aft~2</math> | | |<math>(1-)^{a^2}~aft~2nd~2</math> |
| |<math>\psi_2(\Omega_3^{\Omega_3})</math> | | |<math>\psi_2(\Omega_3^{\Omega_3})</math> |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}+\varepsilon_{a+1})</math> | | |<math>\psi_a(\Omega_{a+1}+\varepsilon_{a+1})</math> |
| |<math>(1-)^{\varepsilon_{a+1}}~aft~2</math> | | |<math>(1-)^{\varepsilon_{a+1}}~aft~2nd~2</math> |
| |<math>\psi_2(\Omega_4)</math> | | |<math>\psi_2(\Omega_4)</math> |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}+BO(a+1))</math> | | |<math>\psi_a(\Omega_{a+1}+BO(a+1))</math> |
| |<math>(1-)^{BO(a+1)}~aft~2</math> | | |<math>(1-)^{BO(a+1)}~aft~2nd~2</math> |
| |<math>\psi_2(\Omega_\omega)</math> | | |<math>\psi_2(\Omega_\omega)</math> |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}\times2)</math> | | |<math>\psi_a(\Omega_{a+1}\times2)</math> |
| |<math>2nd~2</math> | | |<math>3rd~2</math> |
| |<math>\Omega_3</math> | | |<math>\Omega_3</math> |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}\times2+a)</math> | | |<math>\psi_a(\Omega_{a+1}\times2+a)</math> |
| |<math>(1-)^a~aft~2nd~2</math> | | |<math>(1-)^a~aft~3rd~2</math> |
| |<math>\psi_3(\Omega_4)</math> | | |<math>\psi_3(\Omega_4)</math> |
| |- | | |- |
| |<math>\psi_a(\Omega_{a+1}\times3)</math> | | |<math>\psi_a(\Omega_{a+1}\times3)</math> |
| |<math>3rd~2</math> | | |<math>4th~2</math> |
| |<math>\Omega_4</math> | | |<math>\Omega_4</math> |
| |- | | |- |
1
| 投影序数
|
反射序数
|
常规表示
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|