打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

投影 VS 反射稳定:修订间差异

来自Googology Wiki
Z留言 | 贡献
无编辑摘要
Z留言 | 贡献
无编辑摘要
 
(未显示同一用户的1个中间版本)
第1行: 第1行:
本条目展示[[投影序数]]和[[反射序数]]、[[稳定序数]]的列表分析
本条目展示[[投影序数]]和[[反射序数]]、[[Σ1稳定序数]]的列表分析


=== 1 ===
=== 1 ===
第179行: 第179行:
|<math>2nd~2</math>
|<math>2nd~2</math>
|<math>\Omega_2</math>
|<math>\Omega_2</math>
|-
|<math>\psi_a(\Omega_{a+1}+1)</math>
|<math>(1-)^{2nd~2}~aft~2nd~2</math>
|<math>\Omega_2\times\omega</math>
|-
|<math>\psi_a(\Omega_{a+1}+\psi_a(\Omega_{a+1}))</math>
|<math>(1-)^{(1-)^{2nd~2}~aft~2nd~2}~aft~2nd~2</math>
|<math>\Omega_2^2</math>
|-
|<math>\psi_a(\Omega_{a+1}+\psi_a(\Omega_{a+1})\times2)</math>
|<math>(1-)^{2nd~(1-)^{2nd~2}~aft~2nd~2}~aft~2nd~2</math>
|<math>\Omega_2^3</math>
|-
|<math>\psi_a(\Omega_{a+1}+\psi_a(\Omega_{a+1}+1))</math>
|<math>(1-)^{(1-)^{Ord~aft~2nd~2}~aft~2nd~2}~aft~2nd~2</math>
|<math>\Omega_2^\omega</math>
|-
|<math>\psi_a(\Omega_{a+1}+\psi_a(\Omega_{a+1}+\psi_a(\Omega_{a+1})))</math>
|<math>(1-)^{(1-)^{(1-)^{2nd~2}~aft~2nd~2}~aft~2nd~2}~aft~2nd~2</math>
|<math>\Omega_2^{\Omega_2}</math>
|-
|<math>\psi_a(\Omega_{a+1}+a)</math>
|<math>(1-)^a~aft~2</math>
|<math>\psi_2(\Omega_3)</math>
|-
|<math>\psi_a(\Omega_{a+1}+a^a)</math>
|<math>(1-)^{a^2}~aft~2</math>
|<math>\psi_2(\Omega_3^{\Omega_3})</math>
|-
|<math>\psi_a(\Omega_{a+1}+\varepsilon_{a+1})</math>
|<math>(1-)^{\varepsilon_{a+1}}~aft~2</math>
|<math>\psi_2(\Omega_4)</math>
|-
|<math>\psi_a(\Omega_{a+1}+BO(a+1))</math>
|<math>(1-)^{BO(a+1)}~aft~2</math>
|<math>\psi_2(\Omega_\omega)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times2)</math>
|<math>2nd~2</math>
|<math>\Omega_3</math>
|-
|<math>\psi_a(\Omega_{a+1}\times2+a)</math>
|<math>(1-)^a~aft~2nd~2</math>
|<math>\psi_3(\Omega_4)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times3)</math>
|<math>3rd~2</math>
|<math>\Omega_4</math>
|-
|<math>\psi_a(\Omega_{a+1}\times\omega)</math>
|<math>1-2</math>
|<math>\Omega_\omega</math>
|-
|<math>\psi_a(\Omega_{a+1}\times\omega\times2)</math>
|<math>2nd~1-2</math>
|<math>\Omega_{\omega\times2}</math>
|-
|<math>\psi_a(\Omega_{a+1}\times\omega^2)</math>
|<math>1-1-2</math>
|<math>\Omega_{\omega^2}</math>
|-
|<math>\psi_a(\Omega_{a+1}\times\omega^\omega)</math>
|<math>(1-)^\omega~2</math>
|<math>\Omega_{\omega^\omega}</math>
|-
|<math>\psi_a(\Omega_{a+1}\times\psi_a(0))</math>
|<math>(1-)^{(2)}~2</math>
|<math>\Omega_\Omega</math>
|-
|<math>\psi_a(\Omega_{a+1}\times\psi_a(\Omega_{a+1}\times\omega))</math>
|<math>(1-)^{1-2}~2</math>
|<math>\Omega_{\Omega_\omega}</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a)</math>
|<math>(1-)^a~2</math>
|<math>OFP=\psi_I(I)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a+\Omega_{a+1})</math>
|<math>2~aft~(1-)^a~2</math>
|<math>\rm \psi_I(I+1)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a+\Omega_{a+1}\times\psi_a(\Omega_{a+1}\times a))</math>
|<math>(1-)^{(1-)^a~2}~2~aft~(1-)^a~2</math>
|<math>\rm \psi_I(I+\psi_I(I))</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a\times2)</math>
|<math>2nd~(1-)^a~2</math>
|<math>\rm \psi_I(I\times2)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a\times\omega)</math>
|<math>(1-)^{a+1}~2</math>
|<math>\rm \psi_I(I\times\omega)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a\times\psi_a(\Omega_{a+1}\times a))</math>
|<math>(1-)^{a+(1-)^a~2}~2</math>
|<math>\rm \psi_I(I\times\psi_I(I))</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a^2)</math>
|<math>(1-)^{a\times2}~2</math>
|<math>\rm \psi_I(I^2)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a^3)</math>
|<math>(1-)^{a\times3}~2</math>
|<math>\rm \psi_I(I^3)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times a^a)</math>
|<math>(1-)^{a^2}~2</math>
|<math>\rm \psi_I(I^I)</math>
|-
|<math>\psi_a(\Omega_{a+1}\times \varepsilon_{a+1})</math>
|<math>(1-)^{\varepsilon_{a+1}}~2</math>
|<math>\rm \psi_I(\Omega_{I+1})</math>
|-
|<math>\psi_a(\Omega_{a+1}\times BO(a+1))</math>
|<math>(1-)^{BO(a+1)}~2</math>
|<math>\rm \psi_I(\Omega_{I+\omega})</math>
|-
|<math>\psi_a(\Omega_{a+1}\times SHO(a+1))</math>
|<math>(1-)^{SHO(a+1)}~2</math>
|<math>\rm \psi_I(\psi_H(\varepsilon_{H+1}))</math>
|-
|<math>\psi_a(\Omega_{a+1}^2)</math>
|<math>2~1-2</math>
|<math>\rm I</math>
|-
|<math>\psi_a(\Omega_{a+1}^2+\Omega_{a+1})</math>
|<math>2~aft~2~1-2</math>
|<math>\rm \Omega_{I+1}</math>
|-
|<math>\psi_a(\Omega_{a+1}^2+\Omega_{a+1}\times\omega)</math>
|<math>1-2~aft~2~1-2</math>
|<math>\rm \Omega_{I+\omega}</math>
|-
|<math>\psi_a(\Omega_{a+1}^2+\Omega_{a+1}\times\psi_a(\Omega_{a+1}^2))</math>
|<math>(1-)^{2~1-2}~2~aft~2~1-2</math>
|<math>\rm \Omega_{I\times2}</math>
|-
|<math>\psi_a(\Omega_{a+1}^2+\Omega_{a+1}\times\psi_a(\Omega_{a+1}^2+1))</math>
|<math>(1-)^{Ord~aft~2~1-2}~2~aft~2~1-2</math>
|<math>\rm \Omega_{I\times\omega}</math>
|-
|<math>\psi_a(\Omega_{a+1}^2+\Omega_{a+1}\times\psi_a(\Omega_{a+1}^2+\psi_a(\Omega_{a+1}^2)))</math>
|<math>(1-)^{(1-)^{2~1-2}~aft~2~1-2}~2~aft~2~1-2</math>
|<math>\rm \Omega_{I^2}</math>
|-
|<math>\psi_a(\Omega_{a+1}^2+\Omega_{a+1}\times\psi_a(\Omega_{a+1}^2+a))</math>
|<math>(1-)^{(1-)^a~aft~2~1-2}~2~aft~2~1-2</math>
|<math>\rm \Omega_{\varepsilon_{I+1}}</math>
|}
|}
[[分类:分析]]
[[分类:分析]]

2025年7月19日 (六) 10:27的最新版本

本条目展示投影序数反射序数Σ1稳定序数的列表分析

1

投影序数 反射序数 常规表示
ψa(0) min2 Ω
ψa(0)×2 (1)(2)aft2 Ω×2
ψa(0)×3 2nd(1)(2)aft2 Ω×3
ψa(1) (1)(2)+1aft2 Ω×ω
ψa(2) (1)(2)+2aft2 Ω×ω2
ψa(ω) (1)(2)+ωaft2 Ω×ωω
ψa(BO) (1)(2)+BOaft2 Ω×BO
ψa(ψa(0)) (1)(1)(2)aft2aft2 Ω2
ψa(ψa(0)+1) (1)(1)(2)aft2+1aft2 Ω2×ω
ψa(ψa(0)×2) (1)2nd(1)(2)aft2aft2 Ω3
ψa(ψa(1)) (1)(1)(2)+1aft2aft2 Ωω
ψa(ψa(ψa(0))) (1)(1)(1)(2)aft2aft2aft2 ΩΩ
ψa(ψa(ψa(ψa(0)))) (1)(1)(1)(1)(2)aft2aft2aft2aft2 ΩΩΩ
ψa(a) (1)aaft2 ψ1(Ω2)
ψa(a)×2 (1)(1)aaft2aft(1)aaft2 ψ1(Ω2)×2
ψa(a+1) (1)(1)aaft2+1aft(1)aaft2 ψ1(Ω2+1)
ψa(a+ψa(a)) (1)(1)(1)aaft2aft(1)aaft2aft(1)aaft2 ψ1(Ω2+ψ1(Ω2))
ψa(a×2) 2nd(1)aaft2 ψ1(Ω2×2)
ψa(a×3) 3rd(1)aaft2 ψ1(Ω2×3)
ψa(a×ω) (1)a+1aft2 ψ1(Ω2×ω)
ψa(a×ψa(a)) (1)a+(1)aaft2aft2 ψ1(Ω2×ψ1(Ω2))
ψa(a2) (1)a×2aft2 ψ1(Ω22)
ψa(a2+a) (1)aaft(1)a×2aft2 ψ1(Ω22+Ω2)
ψa(a2+a×ψa(a2)) (1)a+(1)a×2aft2aft(1)a×2aft2 ψ1(Ω22+Ω2×ψ1(Ω22))
ψa(a2×2) 2nd(1)a×2aft2 ψ1(Ω22×2)
ψa(a2×ω) (1)a×2+1aft2 ψ1(Ω22×ω)
ψa(a3) (1)a×3aft2 ψ1(Ω23)
ψa(aω) (1)a×ωaft2 ψ1(Ω2ω)
ψa(aa) (1)a2aft2 ψ1(Ω2Ω2)
ψa(aa+1) (1)a2+aaft2 ψ1(Ω2Ω2+1)
ψa(aa+ω) (1)a2+a×ωaft2 ψ1(Ω2Ω2+ω)
ψa(aa×2) (1)a2×2aft2 ψ1(Ω2Ω2×2)
ψa(aa×ω) (1)a2×ωaft2 ψ1(Ω2Ω2×ω)
ψa(aa2) (1)a3aft2 ψ1(Ω2Ω22)
ψa(aa3) (1)a4aft2 ψ1(Ω2Ω23)
ψa(aaω) (1)aωaft2 ψ1(Ω2Ω2ω)
ψa(aaa) (1)aaaft2 ψ1(Ω2Ω2Ω2)
ψa(εa+1) (1)εa+1aft2 ψ1(Ω3)
ψa(ζa+1) (1)ζa+1aft2 ψ1(Ω32)
ψa(Γa+1) (1)Γa+1aft2 ψ1(Ω3Ω3)
ψa(BHO(a+1)) (1)BHO(a+1)aft2 ψ1(Ω4)
ψa(BO(a+1)) (1)BO(a+1)aft2 ψ1(Ωω)
ψa(Ωa+1) 2nd2 Ω2
ψa(Ωa+1+1) (1)2nd2aft2nd2 Ω2×ω
ψa(Ωa+1+ψa(Ωa+1)) (1)(1)2nd2aft2nd2aft2nd2 Ω22
ψa(Ωa+1+ψa(Ωa+1)×2) (1)2nd(1)2nd2aft2nd2aft2nd2 Ω23
ψa(Ωa+1+ψa(Ωa+1+1)) (1)(1)Ordaft2nd2aft2nd2aft2nd2 Ω2ω
ψa(Ωa+1+ψa(Ωa+1+ψa(Ωa+1))) (1)(1)(1)2nd2aft2nd2aft2nd2aft2nd2 Ω2Ω2
ψa(Ωa+1+a) (1)aaft2 ψ2(Ω3)
ψa(Ωa+1+aa) (1)a2aft2 ψ2(Ω3Ω3)
ψa(Ωa+1+εa+1) (1)εa+1aft2 ψ2(Ω4)
ψa(Ωa+1+BO(a+1)) (1)BO(a+1)aft2 ψ2(Ωω)
ψa(Ωa+1×2) 2nd2 Ω3
ψa(Ωa+1×2+a) (1)aaft2nd2 ψ3(Ω4)
ψa(Ωa+1×3) 3rd2 Ω4
ψa(Ωa+1×ω) 12 Ωω
ψa(Ωa+1×ω×2) 2nd12 Ωω×2
ψa(Ωa+1×ω2) 112 Ωω2
ψa(Ωa+1×ωω) (1)ω2 Ωωω
ψa(Ωa+1×ψa(0)) (1)(2)2 ΩΩ
ψa(Ωa+1×ψa(Ωa+1×ω)) (1)122 ΩΩω
ψa(Ωa+1×a) (1)a2 OFP=ψI(I)
ψa(Ωa+1×a+Ωa+1) 2aft(1)a2 ψI(I+1)
ψa(Ωa+1×a+Ωa+1×ψa(Ωa+1×a)) (1)(1)a22aft(1)a2 ψI(I+ψI(I))
ψa(Ωa+1×a×2) 2nd(1)a2 ψI(I×2)
ψa(Ωa+1×a×ω) (1)a+12 ψI(I×ω)
ψa(Ωa+1×a×ψa(Ωa+1×a)) (1)a+(1)a22 ψI(I×ψI(I))
ψa(Ωa+1×a2) (1)a×22 ψI(I2)
ψa(Ωa+1×a3) (1)a×32 ψI(I3)
ψa(Ωa+1×aa) (1)a22 ψI(II)
ψa(Ωa+1×εa+1) (1)εa+12 ψI(ΩI+1)
ψa(Ωa+1×BO(a+1)) (1)BO(a+1)2 ψI(ΩI+ω)
ψa(Ωa+1×SHO(a+1)) (1)SHO(a+1)2 ψI(ψH(εH+1))
ψa(Ωa+12) 212 I
ψa(Ωa+12+Ωa+1) 2aft212 ΩI+1
ψa(Ωa+12+Ωa+1×ω) 12aft212 ΩI+ω
ψa(Ωa+12+Ωa+1×ψa(Ωa+12)) (1)2122aft212 ΩI×2
ψa(Ωa+12+Ωa+1×ψa(Ωa+12+1)) (1)Ordaft2122aft212 ΩI×ω
ψa(Ωa+12+Ωa+1×ψa(Ωa+12+ψa(Ωa+12))) (1)(1)212aft2122aft212 ΩI2
ψa(Ωa+12+Ωa+1×ψa(Ωa+12+a)) (1)(1)aaft2122aft212 ΩεI+1
目录