打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

BMS分析:修订间差异

来自Googology Wiki
Z留言 | 贡献
无编辑摘要
Z留言 | 贡献
无编辑摘要
 
(未显示同一用户的4个中间版本)
第1行: 第1行:
==== Part 1:0~BO ====
本条目展示的分析来自最菜萌新
主词条:[[BMS分析Part1:0~BO]]


三行之后 BMS 的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。
== Part 1:0~[[BO]] ==
主词条:[[BMS分析Part1:0~BO|BMS分析Part1:0~BO]]


{| class="wikitable"
这个部分的BMS行为较为简单。
|-
! BMS !! MOCF
|-
| <math>(0)(1,1,1)</math>|| <math>\psi(\Omega_\omega)</math>
|-
| <math>(0)(1,1,1)(1,1,0)</math>|| <math>\psi(\Omega_\omega+1)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,0,0)</math>|| <math>\psi(\Omega_\omega+\omega)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,1,0)</math>|| <math>\psi(\Omega_\omega+\Omega)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(0))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(2,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(1))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,0,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\omega))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,1,0)(4,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\psi_1(0)))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,0,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2)\times\omega)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,1,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2)^\omega)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2+1))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,0,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2+\omega))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,1,0)(4,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2+\psi_1(0)))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2\times2))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,0,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2\times\omega))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2^2))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(4,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_2^{\Omega_2}))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\psi_2(0)))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)(4,4,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\psi_3(0)))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_\omega))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_\omega+1))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,0,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_\omega+\omega))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(0)))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)(5,3,0)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\psi_2(0))))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,1)</math>|| <math>\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\Omega_\omega)))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega+\Omega_2)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,0)</math>|| <math>\psi(\Omega_\omega+\psi_2(0))</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0)</math>|| <math>\psi(\Omega_\omega+\Omega_3)</math>
|-
| <math>(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,4,0)</math>|| <math>\psi(\Omega_\omega+\psi_3(0))</math>
|-
| <math>(0)(1,1,1)(1,1,1)</math>|| <math>\psi(\Omega_\omega\times2)</math>
|-
| <math>(0)(1,1,1)(2,0,0)</math>|| <math>\psi(\Omega_\omega\times\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)</math>|| <math>\psi(\Omega_\omega\times\Omega)</math>
|}


==== Part 4:(0)(1,1,1)(2,1,0)~(0)(1,1,1)(2,1,1) ====
== Part 2:[[BO]]~[[EBO]] ==
这一部分涉及到[[提升效应]]
由于提升效应的出现,三行之后 BMS 的行为复杂度急剧上升。


{| class="wikitable"
主词条:[[BMS分析Part2:BO~EBO]]
|-
 
! BMS !! MOCF
== Part 3:EBO~[[SSO]] ==
|-
在这里,我们将正式引入[[投影序数]]。
| <math>(0)(1,1,1)(2,1,0)</math>|| <math>\psi(\Omega_\omega\times\Omega)</math>
 
|-
主词条:[[BMS分析Part3:EBO~SSO]]
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega))</math>
 
|-
== Part4:SSO~[[LRO|pLRO]] ==
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,0,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\omega))</math>
在我们的努力之下,一个“升级版”的BO浮出了水面。
|-
 
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega))</math>
主词条:[[BMS分析Part4:SSO~pLRO]]
|-
 
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega+1))</math>
== Part5:pLRO~TSSO ==
|-
在投影序数的助力下,我们抵达了三行BMS的终点,抵达了可怕与不可怕的分界点。
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega+\psi_1(0)))</math>
 
|-
主词条:[[BMS分析Part5:pLRO~TSSO]]
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,1)(5,1,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega)))</math>
 
|-
== Part6:TSSO~SHO ==
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_2)</math>
[[向上投影]]为我们揭示了BMS的<math>\varepsilon_0</math>结构
|-
 
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\psi_2(0))</math>
主词条:[[BMS分析Part6]]、[[BMS分析Part7]]
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,1)(4,1,0)(3,3,0)(4,3,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_3)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0)(2,2,1)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega+\Omega_\omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,0,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega+\Omega_\omega)\times\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\psi_1(\Omega_\omega\times\Omega+\Omega_\omega+1))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega+\Omega_2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,1)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega\times2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,0,0)</math>|| <math>\psi(\Omega_\omega\times\Omega+\Omega_\omega\times\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0)</math>|| <math>\psi(\Omega_\omega\times\Omega\times2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,0,0)</math>|| <math>\psi(\Omega_\omega\times\Omega\times\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0)</math>|| <math>\psi(\Omega_\omega\times\psi_1(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)</math>|| <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)</math>|| <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\Omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1)</math>|| <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\Omega+\Omega_\omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1)(5,1,0)</math>|| <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\Omega\times2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(6,2,1)</math>|| <math>\psi(\Omega_\omega\times\psi_1(\Omega_\omega\times\psi_1(\Omega_\omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)</math>|| <math>\psi(\Omega_\omega\times\Omega_2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,2,0)(5,3,0)</math>|| <math>\psi(\Omega_\omega\times\psi_2(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,0)</math>|| <math>\psi(\Omega_\omega\times\Omega_3)</math>
|-
| <math>\color{red}{(0)(1,1,1)(2,1,0)(1,1,1)}</math>|| <math>\color{red}\psi(\Omega_\omega^2)</math>
|-
|<math>(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)</math>
|<math>\psi(\Omega_\omega^2+1)</math>
|-
|<math>(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)</math>
|<math>\psi(\Omega_\omega^2+\psi_1(\Omega_\omega))</math>
|-
|<math>(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)(3,1,0)</math>
|<math>\psi(\Omega_\omega^2+\psi_1(\Omega_\omega\times\Omega))</math>
|-
|<math>(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)(3,1,0)(2,1,0)(3,2,1)(4,1,0)</math>
|<math>\psi(\Omega_\omega^2+\psi_1(\Omega_\omega\times\Omega+\psi_1(\Omega_\omega\times\Omega)))</math>
|-
|<math>(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,1)(4,1,0)</math>
|<math>\psi(\Omega_\omega^2+\psi_1(\Omega_\omega\times\Omega+\Omega_2))</math>
|-
|<math>(0)(1,1,1)(2,1,0)(1,1,1)(2,1,0)(1,1,1)</math>
|<math>\psi(\Omega_\omega^2\times2)</math>
|-
|<math>(0)(1,1,1)(2,1,0)(2,0,0)</math>
|<math>\psi(\Omega_\omega^2\times\omega)</math>
|-
|<math>(0)(1,1,1)(2,1,0)(2,1,0)</math>
|<math>\psi(\Omega_\omega^2\times\Omega)</math>
|-
|<math>(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)</math>
|<math>\psi(\Omega_\omega^2\times\Omega+\psi_1(\Omega_\omega))</math>
|-
|<math>(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,1,0)(2,2,1)</math>
|<math>\psi(\Omega_\omega^2\times\Omega+\Omega_\omega^2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(3,2,0)</math>|| <math>\psi(\Omega_\omega^2\times\Omega_2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(3,2,0)(2,2,0)(3,3,1)(4,3,0)(4,3,0)</math>|| <math>\psi(\Omega_\omega^2\times\Omega_3)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(2,1,0)(1,1,1)</math>|| <math>\psi(\Omega_\omega^3)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(2,1,0)(2,1,0)(1,1,1)</math>|| <math>\psi(\Omega_\omega^4)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,0,0)</math>|| <math>\psi(\Omega_\omega^\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,1,0)</math>|| <math>\psi(\Omega_\omega^\Omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,1,0)(1,1,1)</math>|| <math>\psi(\Omega_\omega^{\Omega_\omega})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,1,0)(4,1,0)(1,1,1)</math>|| <math>\psi(\Omega_\omega^{\Omega_\omega^{\Omega_\omega}})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)</math>|| <math>\psi(\psi_\omega(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(1,1,1)</math>|| <math>\psi(\psi_\omega(0)+\Omega_\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(1,1,1)(2,1,0)(3,2,0)</math>|| <math>\psi(\psi_\omega(0)\times2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(2,0,0)</math>|| <math>\psi(\psi_\omega(0)\times\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(2,1,0)</math>|| <math>\psi(\psi_\omega(0)\times\Omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(2,1,0)(3,2,0)</math>|| <math>\psi(\psi_\omega(0)^2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(3,0,0)</math>|| <math>\psi(\psi_\omega(0)^\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)</math>|| <math>\psi(\psi_\omega(0)^\Omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)(4,2,0)</math>|| <math>\psi(\psi_\omega(0)^{\psi_\omega(0)})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)(4,2,0)(4,1,0)(5,2,0)</math>|| <math>\psi(\psi_\omega(0)^{\psi_\omega(0)^{\psi_\omega(0)}})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)</math>|| <math>\psi(\psi_\omega(1))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)(3,2,0)</math>|| <math>\psi(\psi_\omega(2))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,0,0)</math>|| <math>\psi(\psi_\omega(\omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,1,0)</math>|| <math>\psi(\psi_\omega(\Omega))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,1,0)(5,2,0)</math>|| <math>\psi(\psi_\omega(\psi_\omega(0)))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)</math>|| <math>\psi(\Omega_{\omega+1})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(1,1,1)(2,1,1)(3,2,0)(4,2,0)</math>|| <math>\psi(\Omega_{\omega+1}+\psi_\omega(\Omega_{\omega+1}))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(3,2,0)(4,2,0)</math>|| <math>\psi(\Omega_{\omega+1}\times2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(4,0,0)</math>|| <math>\psi(\Omega_{\omega+1}\times\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(4,1,0)</math>|| <math>\psi(\Omega_{\omega+1}\times\Omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(4,2,0)</math>|| <math>\psi(\Omega_{\omega+1}^2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,0,0)</math>|| <math>\psi(\Omega_{\omega+1}^\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,1,0)</math>|| <math>\psi(\Omega_{\omega+1}^\Omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,2,0)</math>|| <math>\psi(\Omega_{\omega+1}^{\Omega_{\omega+1}})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)</math>|| <math>\psi(\psi_{\omega+1}(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)(5,3,0)</math>|| <math>\psi(\Omega_{\omega+2})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)(5,4,0)</math>|| <math>\psi(\psi_{\omega+2}(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)</math>|| <math>\psi(\Omega_{\omega\times2})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(1,1,1)</math>|| <math>\psi(\Omega_{\omega\times2}+\Omega_\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(1,1,1)(2,1,0)(3,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}+\psi_\omega(\Omega_{\omega\times2}))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}+\psi_\omega(\Omega_{\omega\times2}+1))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,1,0)(5,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}+\psi_\omega(\Omega_{\omega\times2}+\psi_\omega(\Omega_{\omega\times2})))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}+\Omega_{\omega+1})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)</math>|| <math>\psi(\Omega_{\omega\times2}+\psi_{\omega+1}(\Omega_{\omega\times2}))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)(4,3,0)</math>|| <math>\psi(\Omega_{\omega\times2}+\psi_{\omega+1}(\Omega_{\omega\times2}+1))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)(4,3,0)(5,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}+\psi_{\omega+1}(\Omega_{\omega\times2}+\Omega_{\omega+1}))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)(4,3,0)(5,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}+\Omega_{\omega+2})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(3,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}\times2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)</math>|| <math>\psi(\Omega_{\omega\times2}\times\Omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)(1,1,1)</math>|| <math>\psi(\Omega_{\omega\times2}\times\Omega_\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)(5,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}\times\psi_\omega(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)(5,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}\times\psi_\omega(\Omega_{\omega\times2}))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}\times\Omega_{\omega+1})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,0)(4,3,1)</math>|| <math>\psi(\Omega_{\omega\times2}\times\Omega_{\omega+1}+\psi_{\omega+1}(\Omega_{\omega\times2}))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,0)(4,3,1)(5,2,0)(4,3,1)</math>|| <math>\psi(\Omega_{\omega\times2}\times\Omega_{\omega+1}+\Omega_{\omega\times2})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,0)(4,3,1)(5,3,0)</math>|| <math>\psi(\Omega_{\omega\times2}\times\Omega_{\omega+2})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}^2)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(4,2,0)(3,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}^3)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,0,0)</math>|| <math>\psi(\Omega_{\omega\times2}^\omega)</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,2,0)</math>|| <math>\psi(\Omega_{\omega\times2}^{\Omega_{\omega+1}})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,2,0)(3,2,1)</math>|| <math>\psi(\Omega_{\omega\times2}^{\Omega_{\omega\times2}})</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,3,0)</math>|| <math>\psi(\psi_{\omega\times2}(0))</math>
|-
| <math>(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,3,1)</math>|| <math>\psi(\Omega_{\omega\times3})</math>
|-
| <math>(0)(1,1,1)(2,1,1)</math>|| <math>\psi(\Omega_{\omega^2})</math>
|}


[[分类:分析]]
[[分类:分析]]

2025年8月24日 (日) 11:51的最新版本

本条目展示的分析来自最菜萌新

Part 1:0~BO

主词条:BMS分析Part1:0~BO

这个部分的BMS行为较为简单。

Part 2:BO~EBO

由于提升效应的出现,三行之后 BMS 的行为复杂度急剧上升。

主词条:BMS分析Part2:BO~EBO

Part 3:EBO~SSO

在这里,我们将正式引入投影序数

主词条:BMS分析Part3:EBO~SSO

Part4:SSO~pLRO

在我们的努力之下,一个“升级版”的BO浮出了水面。

主词条:BMS分析Part4:SSO~pLRO

Part5:pLRO~TSSO

在投影序数的助力下,我们抵达了三行BMS的终点,抵达了可怕与不可怕的分界点。

主词条:BMS分析Part5:pLRO~TSSO

Part6:TSSO~SHO

向上投影为我们揭示了BMS的ε0结构

主词条:BMS分析Part6BMS分析Part7