BSM
来自Googology Wiki
更多操作
Bashicu急矩阵(Bashicu Sudden Matrix,BSM)是Bashicu Hyudora发明的序数记号。它目前还未被证明良序。它被认为是急模式的源头
定义
BSM只有找坏根规则和BMS不一致。以下介绍不一致的地方。
- 第0列:默认行、列标均从1开始,并在第1列之前加上一个额外的没有值的第0列。如果BHM中一个元素没有父项,则取其父项为同行第0列的元素。
- 子项:如果项A的父项是项B,则称A是B的子项。
- 待定坏根:待定坏根为末列最靠下的非0项(LNZ)的所有祖先项(包括第0列元素)的子项所在列。特别的,如果末列最下非0项不在第1行,则要求待定坏根正上方的元素应当是末列最下非0项正上方的元素的祖先项。我们称待定根集合中的一些根为“小根”,一些根为“大根”。大根与小根是不冲突的,这意味着,一个根可能既不是小根也不是大根,也可能同时是小根和大根。坏根的选择,和小根与大根息息相关。
- 预展开:根据找到的待定坏根r,确定待定好部G',待定坏部B',末列L,待定阶差向量,随后按照BMS的规则得到r对应的预展开式(其中~是序列连接)。特别的,我们称最右侧的待定坏根(即BMS意义的坏根)对应的预展开式为基准式。
- 小根:至少满足下列两条件之一的根r是小根:①r的预展开式在字典序上小于基准式。②如果根r是最右侧待定坏根的祖先项,且第r列和最右侧待定坏根所处列的第t+1行到最后一行,不能完全对应相同(t是LNZ所处行号)。
- 大根:如果根r是最右侧待定坏根的祖先项,且满足第r列和最右侧待定坏根所处列的第t+1行到最后一行,完全对应相同
- 坏根:坏根定义为在所有“是小根但不是大根”的待定坏根右边的第一个待定坏根。特别的,如果不存在这样的这样的待定坏根,则坏根是最左侧待定坏根。
BSM的极限基本列是,因此从这里面的元素经过不断取基本列或取前驱所能得到的式子是BSM的标准式,否则不是标准式。
值得注意的是,单行BSM又称急序列(Sudden Sequence System,SSS),也是一个很有名的序数记号。
实例:
例1:
可以发现LNZ的祖先是第0项、第1项、第2项。找到它们的所有子项,是第1项和第2项。于是给出预展开式,.因此小根是第0项。因此坏根是第1项。得到展开式是.
例2:
我们用红色标记其待定坏根:,前两个待定坏根均为最右侧待定坏根第三列第一行的2的祖先项,第一列第一行的0下方的元素和最右侧待定坏根下方的元素完全一致,因此它是一个大根。而第二列第一行的1下方的元素和最右侧待定坏根下方的元素不一致,因此它是一个小根。在这里我们很幸运,可以直接得出坏根是第三列第一行的2.于是展开式是
例3:
我们用红色标记其待定坏根:.其中第一列第一行的0和第四列第一行的1是最右侧待定坏根2的祖先项。可以发现它们都是大根。接下来是各个待定坏根的预展开式:,它是基准式。接下来有然后是。然后是.然后是.比较字典序后发现,第二列第一行的1、第三列第一行的1、第四列第一行的1的预展开式都大于基准式,因此它们都不是小根。但因为第一列第一行的0和第四列第一行的1是大根,因此坏根是第四列第一行的1.于是得到展开式
枚举和强度分析
参见词条BSM分析