<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
[1]
<mtable columnalign="left">
[2]
<mtr>
<mtd>
<mstyle mathvariant="bold" mathsize="1.2em">
<mtext>非平凡初等嵌入</mtext>
</mstyle>
</mtd>
</mtr>
[3]
<mtr>
<mtd>
<mrow>
<mtext>设</mtext>
<mi>M</mi>
<mo>,</mo>
<mi>N</mi>
<mtext>为传递类且满足 ZF⁻;映射</mtext>
<mi>j</mi>
<mo>:</mo>
<mi>M</mi>
<mo>→</mo>
<mi>N</mi>
<mtext>称为初等嵌入当且仅当</mtext>
</mrow>
<mrow>
<mo>∀</mo>
<mi>φ</mi>
<mo>(</mo>
<msub><mi>x</mi><mn>1</mn></msub>
<mo>,</mo>
<mo>…</mo>
<mo>,</mo>
<msub><mi>x</mi><mi>n</mi></msub>
<mo>)</mo>
<mo>,</mo>
<mo>∀</mo>
<msub><mi>a</mi><mn>1</mn></msub>
<mo>,</mo>
<mo>…</mo>
<mo>,</mo>
<msub><mi>a</mi><mi>n</mi></msub>
<mo>∈</mo>
<mi>M</mi>
</mrow>
<mrow>
<mi>M</mi>
<mo>⊨</mo>
<mi>φ</mi>
<mo>[</mo>
<msub><mi>a</mi><mn>1</mn></msub>
<mo>,</mo>
<mo>…</mo>
<mo>,</mo>
<msub><mi>a</mi><mi>n</mi></msub>
<mo>]</mo>
<mo>⇔</mo>
<mi>N</mi>
<mo>⊨</mo>
<mi>φ</mi>
<mo>[</mo>
<mi>j</mi>
<mo>(</mo>
<msub><mi>a</mi><mn>1</mn></msub>
<mo>)</mo>
<mo>,</mo>
<mo>…</mo>
<mo>,</mo>
<mi>j</mi>
<mo>(</mo>
<msub><mi>a</mi><mi>n</mi></msub>
<mo>)</mo>
<mo>]</mo>
</mrow>
<mtext>;且称为</mtext>
<mstyle mathvariant="bold">
<mtext>非平凡</mtext>
</mstyle>
<mtext>当且仅当</mtext>
<mo>∃</mo>
<mi>x</mi>
<mo>∈</mo>
<mi>M</mi>
<mo>,</mo>
<mi>j</mi>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
<mo>≠</mo>
<mi>x</mi>
<mo>.</mo>
</mtd>
</mtr>
<mtr><mtd><mspace height="0.6em"/></mtd></mtr>
[4]
<mtr>
<mtd>
<mstyle mathvariant="bold" mathsize="1.2em">
<mtext>临界点</mtext>
</mstyle>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>对非平凡初等嵌入</mtext>
<mi>j</mi>
<mo>:</mo>
<mi>M</mi>
<mo>→</mo>
<mi>N</mi>
<mtext>,存在最小序数</mtext>
<mi>κ</mi>
<mtext>使得</mtext>
<mi>j</mi>
<mo>(</mo>
<mi>κ</mi>
<mo>)</mo>
<mo>≠</mo>
<mi>κ</mi>
<mo>,记</mtext>
<mtext>crit</mtext>
<mo>(</mo>
<mi>j</mi>
<mo>)</mo>
<mo>=</mo>
<mi>κ</mi>
<mo>.</mo>
</mrow>
</mtd>
</mtr>
<mtr><mtd><mspace height="0.6em"/></mtd></mtr>
[5]
<mtr>
<mtd>
<mstyle mathvariant="bold" mathsize="1.2em">
<mtext>共尾性</mtext>
</mstyle>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>嵌入</mtext>
<mi>j</mi>
<mo>:</mo>
<mi>M</mi>
<mo>→</mo>
<mi>N</mi>
<mtext>称为共尾,当且仅当</mtext>
<mo>∀</mo>
<mi>y</mi>
<mo>∈</mo>
<mi>N</mi>
<mo>,</mo>
<mo>∃</mo>
<mi>x</mi>
<mo>∈</mo>
<mi>M</mi>
<mo>,</mo>
<mi>y</mi>
<mo>∈</mo>
<mi>j</mi>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
<mo>.</mo>
</mrow>
<mtext>若</mtext>
<mi>M</mi>
<mo>⊨</mo>
<mtext>ZF</mtext>
<mtext>且</mtext>
<mi>N</mi>
<mo>⊆</mo>
<mi>M</mi>
<mtext>,则任何初等嵌入都是共尾的</mtext>
<mo>.</mo>
</mtd>
</mtr>
<mtr><mtd><mspace height="0.6em"/></mtd></mtr>
[6]
<mtr>
<mtd>
<mstyle mathvariant="bold" mathsize="1.2em">
<mtext>一致性</mtext>
</mstyle>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mtext>在 ZFC 中不存在非平凡初等嵌入</mtext>
<mi>j</mi>
<mo>:</mo>
<mi>V</mi>
<mo>→</mo>
<mi>V</mi>
<mo>.</mo>
</mrow>
<mrow>
<mtext>更具体地(Kunen, 1971):对任意序数</mtext>
<mi>λ</mi>
<mtext>,不存在非平凡初等嵌入</mtext>
<mi>j</mi>
<mo>:</mo>
<msub><mi>V</mi><mrow><mi>λ</mi><mo>+</mo><mn>2</mn></mrow></msub>
<mo>→</mo>
<msub><mi>V</mi><mrow><mi>λ</mi><mo>+</mo><mn>2</mn></mrow></msub>
<mtext>。</mtext>
</mrow>
</mtd>
</mtr>
</mtable>
</math>