稳定序数
更多操作
是的初等子结构,如果任取公式均有单射j满足|=(,,…)等价于|=(j(),j(),…),也称其为 稳定到
除此外,我们还有是-反射用于表达一些精细的层级,其中稳定到
(如未特别说明,下文的稳定到均为稳定到)
函数式定义:
是-反射 onto X,如果任取公式及参数和
有,对于
序数式定义:
是-反射 onto X,如果任取公式,参数和有
,对于和
关于函数式定义,由于-ply的顶点下成员都是-ply,这会到达f和的某种不动点,以至于无法继续行进
稳定序数有如下路径:
稳定到,则任取有反射序数
是前个满足稳定到的上界,则是 onto {稳定到}的最小成员
是前个满足稳定到的上界,则是 onto onto {稳定到}的最小成员
是前个满足稳定到的上界,则是 {稳定到}的最小成员
反射是前个满足稳定到的上界,则是 onto {稳定到})的最小成员
是前个满足 onto {稳定到}的上界,则是 onto onto {稳定到})的最小成员
是前个满足 onto {稳定到}的上界,则是 onto {稳定到}))的最小成员
是前个满足{n:({稳定到}}的上界,则是( {稳定到}的最小成员
onto 是前个满足稳定到的上界,则是( onto ) onto {稳定到})的最小成员
是前个满足稳定到的上界,则是 onto {稳定到})的最小成员
稳定到是前个满足稳定到的上界,则是{稳定到} onto {稳定到})的最小成员并且反射
是前个满足{稳定到} onto {稳定到})的上界,则是 onto ({稳定到} onto {稳定到}))的最小成员
是前个满足{稳定到} onto {稳定到})的上界,则是 onto {稳定到} onto {稳定到}))的最小成员
稳定到是前个满足{稳定到} onto {稳定到})的上界,则是{稳定到}( onto {稳定到} onto {稳定到}))的最小成员
是前个满足{n:({稳定到})}的上界,则是({稳定到}的最小成员
是 onto {稳定到}的最小成员
是前个满足 onto {稳定到}的上界,则是 ( onto {稳定到})的最小成员
是前个满足 onto {稳定到}的上界,则是( onto onto {稳定到})的最小成员
稳定到是前个满足 onto {稳定到}的上界,则是{稳定到}( onto onto {稳定到})的最小成员
onto {稳定到}是前个满足 onto {稳定到}的上界,则是 onto {稳定到}( onto onto {稳定到})的最小成员
是前个满足{x:( onto {稳定到}}的上界,则是( onto {稳定到} 的最小成员
是 onto onto {稳定到})的最小成员
是 onto {稳定到})的,则是 onto {稳定到})的最小成员
稳定到是 onto {稳定到}的,则是{稳定到}( onto {稳定到})的最小成员
是 onto {稳定到})的最小成员
是{稳定到} onto {稳定到})的最小成员
稳定到,且是-反射
是{稳定到} onto {稳定到,且是-反射}的最小成员
是({稳定到} {稳定到,且是-反射}的最小成员
{稳定到,且是-反射}是{稳定到} onto {稳定到,且是-反射}的,则是{稳定到,且是-反射}({稳定到} onto {稳定到,且是-反射})的最小成员
是{稳定到,且是-反射} onto {稳定到,且是-反射}的最小成员
是({稳定到,且是-反射}的最小成员
稳定到,且是-反射
稳定到,则满足对均有是-反射
是 onto {稳定到}的最小成员
是{稳定到} onto {稳定到})的最小成员
是 onto {稳定到}的最小成员
是{稳定到} onto {稳定到}的最小成员
是{稳定到}({稳定到} onto {稳定到})的最小成员
是{稳定到且是-反射} onto {稳定到}的最小成员
是{稳定到} onto {稳定到}的最小成员
稳定到,且是-反射
稳定到,则对有是-反射
稳定到
稳定到
稳定到,其中是最小的稳定到
是第二个满足稳定到的序数
是 onto {稳定到}的最小成员
是 onto {稳定到})的最小成员
是{稳定到} onto {稳定到}的最小成员,其中是满足稳定到的最小序数
是{稳定到} onto {稳定到}的最小成员,其中是上一条中的
是{稳定到} onto {稳定到}的最小成员
是 onto {稳定到}的最小成员
是{稳定到} onto {稳定到}的最小成员
是{稳定到} onto {稳定到}的最小成员,其中是最小的是
是{稳定到} onto {稳定到}的最小成员
是-反射
稳定到
稳定到
稳定到
稳定到,且稳定到,则是首个大于序数满足稳定到
稳定到稳定到,且是-反射
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到
稳定到稳定到,且稳定到稳定到,对