SGH与FGH对照:修订间差异
更多操作
无编辑摘要 |
无编辑摘要 |
||
第3行: | 第3行: | ||
<math>g_{\varepsilon_0\times2}(n)=g_{\varepsilon_0+\varepsilon_0[n]}(n)=(n\uparrow\uparrow n)\times2</math> | <math>g_{\varepsilon_0\times2}(n)=g_{\varepsilon_0+\varepsilon_0[n]}(n)=(n\uparrow\uparrow n)\times2</math> | ||
< | <nowiki>\begin{align} & g_{\varepsilon_0\times\omega}(n)=g_{\varepsilon_0\times n}(n)=(n\uparrow\uparrow n)\times n\\ &g_{\varepsilon_0\times\omega^2}(n)=g_{\varepsilon_0\times\omega\times n}(n)=(n\uparrow\uparrow n)\times n^2\\ &g_{\varepsilon_0\times\omega^\omega}(n)=g_{\varepsilon_0\times\omega^n}(n)=(n\uparrow\uparrow n)\times n^n\\ &g_{\varepsilon_0\times\omega^{\omega^\omega}}(n)=(n\uparrow\uparrow n)\times (n\uparrow\uparrow3)\\ &g_{\varepsilon_0^2}(n)=g_{\varepsilon_0\times\varepsilon_0[n]}(n)=(n\uparrow\uparrow n)^2\\ &g_{\varepsilon_0^3}(n)=(n\uparrow\uparrow n)^3\\ &g_{\varepsilon_0^\omega}(n)=g_{\varepsilon_0^n}(n)=(n\uparrow\uparrow n)^n\\ &g_{\varepsilon_0^{\omega^\omega}}(n)=(n\uparrow\uparrow n)^{n^n}\\ &g_{\varepsilon_0^{\varepsilon_0}}(n)=(n\uparrow\uparrow n)^{n\uparrow\uparrow n}=(n\uparrow\uparrow n)\uparrow\uparrow2\\ &g_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}(n)=(n\uparrow\uparrow n)\uparrow\uparrow3\\ &g_{\varepsilon_1}(n)=(n\uparrow\uparrow n)\uparrow\uparrow n\approx n\uparrow\uparrow(n\times2)\\ &g_{\varepsilon_2}(n)=((n\uparrow\uparrow n)\uparrow\uparrow n)\uparrow\uparrow n\approx n\uparrow\uparrow(n\times3)\\ &n\uparrow\uparrow(n\times3)\sim\varepsilon_2\\ &n\uparrow\uparrow(n\times3+1)\sim\varepsilon_2^{\varepsilon_2}\\ &n\uparrow\uparrow(n\times3+2)\sim\varepsilon_2^{\varepsilon_2^{\varepsilon_2}}\\ &n\uparrow\uparrow(n\times4)\sim\varepsilon_3\\ &n\uparrow\uparrow(n\times5)\sim\varepsilon_4\\ &n\uparrow\uparrow(n^2)\sim\varepsilon_\omega\\ &n\uparrow\uparrow(n^2+1)\sim\varepsilon_\omega^{\varepsilon_\omega}\\&n\uparrow\uparrow(n^2+n)\sim\varepsilon_{\omega+1}\\&n\uparrow\uparrow(n^2\times2)\sim\varepsilon_{\omega\times2}\\&n\uparrow\uparrow(n^3)\sim\varepsilon_{\omega^2}\\&n\uparrow\uparrow(n^n)=n\uparrow\uparrow n\uparrow\uparrow2\sim\varepsilon_{\omega^\omega}\\&n\uparrow\uparrow(n^n+n)\sim\varepsilon_{\omega^\omega+1}\\&</nowiki><nowiki>n\uparrow\uparrow(n^{n+1})\sim\varepsilon_{\omega^{\omega+1}}\\&</nowiki><nowiki>n\uparrow\uparrow(n^{n^2})\sim\varepsilon_{\omega^{\omega^2}}\\&</nowiki><nowiki>n\uparrow\uparrow n\uparrow\uparrow3\sim\varepsilon_{\omega^{\omega^\omega}}\\&</nowiki>n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow 3\sim\varepsilon_{\varepsilon_0}\\&n\uparrow\uparrow (n\uparrow\uparrow n+n)\sim\varepsilon_{\varepsilon_0+1}\\&n\uparrow\uparrow ((n\uparrow\uparrow n)\times2)\sim\varepsilon_{\varepsilon_0\times2}\\&<nowiki>n\uparrow\uparrow ((n\uparrow\uparrow n)\uparrow\uparrow 2)\approx n\uparrow\uparrow n\uparrow\uparrow(n+1)\sim\varepsilon_{\varepsilon_0^{\varepsilon_0}}\\&</nowiki>n\uparrow\uparrow n\uparrow\uparrow(n\times2)\sim\varepsilon_{\varepsilon_1}\\&n\uparrow\uparrow n\uparrow\uparrow(n^2)\sim\varepsilon_{\varepsilon_\omega}\\&<nowiki>n\uparrow\uparrow n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow4\sim\varepsilon_{\varepsilon_{\varepsilon_0}}\\&</nowiki>n\uparrow\uparrow\uparrow n\sim\zeta_0\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\zeta_0+1}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\times2)\sim\varepsilon_{\zeta_0+2}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow n)\sim\varepsilon_{\zeta_0+\varepsilon_0}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\approx n\uparrow\uparrow\uparrow(n+1)\sim\varepsilon_{\zeta_0\times2}\\&<nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\varepsilon_{\zeta_0+1}}\\&</nowiki><nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\varepsilon_{\zeta_0\times2}}\\&</nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times2)\sim\zeta_1\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow n\sim\varepsilon_{\zeta_1+1}\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\zeta_1+\zeta_0}\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow(n\times2))\sim\varepsilon_{\zeta_1\times2}\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times3)\sim\zeta_2\\&n\uparrow\uparrow\uparrow(n^2)\sim\zeta_\omega\\&n\uparrow\uparrow\uparrow(n^n)\sim\zeta_{\omega^\omega}\\&n\uparrow\uparrow\uparrow(n\uparrow\uparrow n)\sim\zeta_{\varepsilon_0}\\&n\uparrow\uparrow\uparrow n\uparrow\uparrow\uparrow n \sim\zeta_{\zeta_0}\\&n\uparrow\uparrow\uparrow\uparrow n \sim\eta_0\\&(n\uparrow\uparrow\uparrow\uparrow n)\uparrow\uparrow\uparrow n \sim\zeta_{\eta_0+1}\\&n\uparrow\uparrow\uparrow\uparrow (n\times2) \sim\eta_1\\&n\uparrow^53 \sim\eta_{\eta_0}\\&n\uparrow^5n \sim\varphi(4,0)\\&n\uparrow^5(n\times2) \sim\varphi(4,1)\\&n\uparrow^6 n \sim\varphi(5,0)\\&n\uparrow^n n \sim\varphi(\omega,0)\\ \end{align} | ||
\ |
2025年8月21日 (四) 09:04的版本
\begin{align} & g_{\varepsilon_0\times\omega}(n)=g_{\varepsilon_0\times n}(n)=(n\uparrow\uparrow n)\times n\\ &g_{\varepsilon_0\times\omega^2}(n)=g_{\varepsilon_0\times\omega\times n}(n)=(n\uparrow\uparrow n)\times n^2\\ &g_{\varepsilon_0\times\omega^\omega}(n)=g_{\varepsilon_0\times\omega^n}(n)=(n\uparrow\uparrow n)\times n^n\\ &g_{\varepsilon_0\times\omega^{\omega^\omega}}(n)=(n\uparrow\uparrow n)\times (n\uparrow\uparrow3)\\ &g_{\varepsilon_0^2}(n)=g_{\varepsilon_0\times\varepsilon_0[n]}(n)=(n\uparrow\uparrow n)^2\\ &g_{\varepsilon_0^3}(n)=(n\uparrow\uparrow n)^3\\ &g_{\varepsilon_0^\omega}(n)=g_{\varepsilon_0^n}(n)=(n\uparrow\uparrow n)^n\\ &g_{\varepsilon_0^{\omega^\omega}}(n)=(n\uparrow\uparrow n)^{n^n}\\ &g_{\varepsilon_0^{\varepsilon_0}}(n)=(n\uparrow\uparrow n)^{n\uparrow\uparrow n}=(n\uparrow\uparrow n)\uparrow\uparrow2\\ &g_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}(n)=(n\uparrow\uparrow n)\uparrow\uparrow3\\ &g_{\varepsilon_1}(n)=(n\uparrow\uparrow n)\uparrow\uparrow n\approx n\uparrow\uparrow(n\times2)\\ &g_{\varepsilon_2}(n)=((n\uparrow\uparrow n)\uparrow\uparrow n)\uparrow\uparrow n\approx n\uparrow\uparrow(n\times3)\\ &n\uparrow\uparrow(n\times3)\sim\varepsilon_2\\ &n\uparrow\uparrow(n\times3+1)\sim\varepsilon_2^{\varepsilon_2}\\ &n\uparrow\uparrow(n\times3+2)\sim\varepsilon_2^{\varepsilon_2^{\varepsilon_2}}\\ &n\uparrow\uparrow(n\times4)\sim\varepsilon_3\\ &n\uparrow\uparrow(n\times5)\sim\varepsilon_4\\ &n\uparrow\uparrow(n^2)\sim\varepsilon_\omega\\ &n\uparrow\uparrow(n^2+1)\sim\varepsilon_\omega^{\varepsilon_\omega}\\&n\uparrow\uparrow(n^2+n)\sim\varepsilon_{\omega+1}\\&n\uparrow\uparrow(n^2\times2)\sim\varepsilon_{\omega\times2}\\&n\uparrow\uparrow(n^3)\sim\varepsilon_{\omega^2}\\&n\uparrow\uparrow(n^n)=n\uparrow\uparrow n\uparrow\uparrow2\sim\varepsilon_{\omega^\omega}\\&n\uparrow\uparrow(n^n+n)\sim\varepsilon_{\omega^\omega+1}\\&n\uparrow\uparrow(n^{n+1})\sim\varepsilon_{\omega^{\omega+1}}\\&n\uparrow\uparrow(n^{n^2})\sim\varepsilon_{\omega^{\omega^2}}\\&n\uparrow\uparrow n\uparrow\uparrow3\sim\varepsilon_{\omega^{\omega^\omega}}\\&n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow 3\sim\varepsilon_{\varepsilon_0}\\&n\uparrow\uparrow (n\uparrow\uparrow n+n)\sim\varepsilon_{\varepsilon_0+1}\\&n\uparrow\uparrow ((n\uparrow\uparrow n)\times2)\sim\varepsilon_{\varepsilon_0\times2}\\&n\uparrow\uparrow ((n\uparrow\uparrow n)\uparrow\uparrow 2)\approx n\uparrow\uparrow n\uparrow\uparrow(n+1)\sim\varepsilon_{\varepsilon_0^{\varepsilon_0}}\\&n\uparrow\uparrow n\uparrow\uparrow(n\times2)\sim\varepsilon_{\varepsilon_1}\\&n\uparrow\uparrow n\uparrow\uparrow(n^2)\sim\varepsilon_{\varepsilon_\omega}\\&n\uparrow\uparrow n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow4\sim\varepsilon_{\varepsilon_{\varepsilon_0}}\\&n\uparrow\uparrow\uparrow n\sim\zeta_0\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\zeta_0+1}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\times2)\sim\varepsilon_{\zeta_0+2}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow n)\sim\varepsilon_{\zeta_0+\varepsilon_0}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\approx n\uparrow\uparrow\uparrow(n+1)\sim\varepsilon_{\zeta_0\times2}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\varepsilon_{\zeta_0+1}}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\varepsilon_{\zeta_0\times2}}\\&(n\uparrow\uparrow\uparrow n)\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times2)\sim\zeta_1\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow n\sim\varepsilon_{\zeta_1+1}\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\zeta_1+\zeta_0}\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow(n\times2))\sim\varepsilon_{\zeta_1\times2}\\&(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times3)\sim\zeta_2\\&n\uparrow\uparrow\uparrow(n^2)\sim\zeta_\omega\\&n\uparrow\uparrow\uparrow(n^n)\sim\zeta_{\omega^\omega}\\&n\uparrow\uparrow\uparrow(n\uparrow\uparrow n)\sim\zeta_{\varepsilon_0}\\&n\uparrow\uparrow\uparrow n\uparrow\uparrow\uparrow n \sim\zeta_{\zeta_0}\\&n\uparrow\uparrow\uparrow\uparrow n \sim\eta_0\\&(n\uparrow\uparrow\uparrow\uparrow n)\uparrow\uparrow\uparrow n \sim\zeta_{\eta_0+1}\\&n\uparrow\uparrow\uparrow\uparrow (n\times2) \sim\eta_1\\&n\uparrow^53 \sim\eta_{\eta_0}\\&n\uparrow^5n \sim\varphi(4,0)\\&n\uparrow^5(n\times2) \sim\varphi(4,1)\\&n\uparrow^6 n \sim\varphi(5,0)\\&n\uparrow^n n \sim\varphi(\omega,0)\\ \end{align}