打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
SGH与FGH对照
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
本条目展示
SGH
与
FGH
的对照,使用
Veblen 函数
和
MOCF
。本条目分析来自梅天狸。
Part 1
g
ε
0
×
2
(
n
)
=
g
ε
0
+
ε
0
[
n
]
(
n
)
=
(
n
↑
↑
n
)
×
2
g
ε
0
×
ω
(
n
)
=
g
ε
0
×
n
(
n
)
=
(
n
↑
↑
n
)
×
n
g
ε
0
×
ω
2
(
n
)
=
g
ε
0
×
ω
×
n
(
n
)
=
(
n
↑
↑
n
)
×
n
2
g
ε
0
×
ω
ω
(
n
)
=
g
ε
0
×
ω
n
(
n
)
=
(
n
↑
↑
n
)
×
n
n
g
ε
0
×
ω
ω
ω
(
n
)
=
(
n
↑
↑
n
)
×
(
n
↑
↑
3
)
g
ε
0
2
(
n
)
=
g
ε
0
×
ε
0
[
n
]
(
n
)
=
(
n
↑
↑
n
)
2
g
ε
0
3
(
n
)
=
(
n
↑
↑
n
)
3
g
ε
0
ω
(
n
)
=
g
ε
0
n
(
n
)
=
(
n
↑
↑
n
)
n
g
ε
0
ω
ω
(
n
)
=
(
n
↑
↑
n
)
n
n
g
ε
0
ε
0
(
n
)
=
(
n
↑
↑
n
)
n
↑
↑
n
=
(
n
↑
↑
n
)
↑
↑
2
g
ε
0
ε
0
ε
0
(
n
)
=
(
n
↑
↑
n
)
↑
↑
3
g
ε
1
(
n
)
=
(
n
↑
↑
n
)
↑
↑
n
≈
n
↑
↑
(
n
×
2
)
g
ε
2
(
n
)
=
(
(
n
↑
↑
n
)
↑
↑
n
)
↑
↑
n
≈
n
↑
↑
(
n
×
3
)
n
↑
↑
(
n
×
3
)
∼
ε
2
n
↑
↑
(
n
×
3
+
1
)
∼
ε
2
ε
2
n
↑
↑
(
n
×
3
+
2
)
∼
ε
2
ε
2
ε
2
n
↑
↑
(
n
×
4
)
∼
ε
3
n
↑
↑
(
n
×
5
)
∼
ε
4
n
↑
↑
(
n
2
)
∼
ε
ω
n
↑
↑
(
n
2
+
1
)
∼
ε
ω
ε
ω
n
↑
↑
(
n
2
+
n
)
∼
ε
ω
+
1
n
↑
↑
(
n
2
×
2
)
∼
ε
ω
×
2
n
↑
↑
(
n
3
)
∼
ε
ω
2
n
↑
↑
(
n
n
)
=
n
↑
↑
n
↑
↑
2
∼
ε
ω
ω
n
↑
↑
(
n
n
+
n
)
∼
ε
ω
ω
+
1
n
↑
↑
(
n
n
+
1
)
∼
ε
ω
ω
+
1
n
↑
↑
(
n
n
2
)
∼
ε
ω
ω
2
n
↑
↑
n
↑
↑
3
∼
ε
ω
ω
ω
n
↑
↑
n
↑
↑
n
=
n
↑
↑
↑
3
∼
ε
ε
0
n
↑
↑
(
n
↑
↑
n
+
n
)
∼
ε
ε
0
+
1
n
↑
↑
(
(
n
↑
↑
n
)
×
2
)
∼
ε
ε
0
×
2
n
↑
↑
(
(
n
↑
↑
n
)
↑
↑
2
)
≈
n
↑
↑
n
↑
↑
(
n
+
1
)
∼
ε
ε
0
ε
0
n
↑
↑
n
↑
↑
(
n
×
2
)
∼
ε
ε
1
n
↑
↑
n
↑
↑
(
n
2
)
∼
ε
ε
ω
n
↑
↑
n
↑
↑
n
↑
↑
n
=
n
↑
↑
↑
4
∼
ε
ε
ε
0
n
↑
↑
↑
n
∼
ζ
0
(
n
↑
↑
↑
n
)
↑
↑
n
∼
ε
ζ
0
+
1
(
n
↑
↑
↑
n
)
↑
↑
(
n
×
2
)
∼
ε
ζ
0
+
2
(
n
↑
↑
↑
n
)
↑
↑
(
n
↑
↑
n
)
∼
ε
ζ
0
+
ε
0
(
n
↑
↑
↑
n
)
↑
↑
(
n
↑
↑
↑
n
)
≈
n
↑
↑
↑
(
n
+
1
)
∼
ε
ζ
0
×
2
(
n
↑
↑
↑
n
)
↑
↑
(
n
↑
↑
↑
n
)
↑
↑
n
∼
ε
ε
ζ
0
+
1
(
n
↑
↑
↑
n
)
↑
↑
(
n
↑
↑
↑
n
)
↑
↑
(
n
↑
↑
↑
n
)
∼
ε
ε
ζ
0
×
2
(
n
↑
↑
↑
n
)
↑
↑
↑
n
≈
n
↑
↑
↑
(
n
×
2
)
∼
ζ
1
(
n
↑
↑
↑
(
n
×
2
)
)
↑
↑
n
∼
ε
ζ
1
+
1
(
n
↑
↑
↑
(
n
×
2
)
)
↑
↑
(
n
↑
↑
↑
n
)
∼
ε
ζ
1
+
ζ
0
(
n
↑
↑
↑
(
n
×
2
)
)
↑
↑
(
n
↑
↑
↑
(
n
×
2
)
)
∼
ε
ζ
1
×
2
(
n
↑
↑
↑
(
n
×
2
)
)
↑
↑
↑
n
≈
n
↑
↑
↑
(
n
×
3
)
∼
ζ
2
n
↑
↑
↑
(
n
2
)
∼
ζ
ω
n
↑
↑
↑
(
n
n
)
∼
ζ
ω
ω
n
↑
↑
↑
(
n
↑
↑
n
)
∼
ζ
ε
0
n
↑
↑
↑
n
↑
↑
↑
n
∼
ζ
ζ
0
n
↑
↑
↑
↑
n
∼
η
0
(
n
↑
↑
↑
↑
n
)
↑
↑
↑
n
∼
ζ
η
0
+
1
n
↑
↑
↑
↑
(
n
×
2
)
∼
η
1
n
↑
5
3
∼
η
η
0
n
↑
5
n
∼
φ
(
4
,
0
)
n
↑
5
(
n
×
2
)
∼
φ
(
4
,
1
)
n
↑
6
n
∼
φ
(
5
,
0
)
n
↑
n
n
∼
φ
(
ω
,
0
)
Part 2
f
3
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
n
∼
ψ
(
Ω
ω
+
1
)
f
3
2
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
(
n
×
2
)
∼
ψ
(
Ω
ω
+
2
)
f
3
n
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
(
n
2
)
∼
ψ
(
Ω
ω
+
ω
)
f
3
f
3
(
n
)
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
(
n
↑
↑
n
)
∼
ψ
(
Ω
ω
+
ψ
(
0
)
)
f
4
(
f
ω
(
n
)
)
=
f
3
f
ω
(
n
)
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
↑
2
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
)
f
3
(
f
4
(
f
ω
(
n
)
)
)
≈
(
(
n
↑
n
n
)
↑
↑
↑
2
)
↑
↑
n
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
+
1
)
f
3
f
ω
(
n
)
(
f
4
(
f
ω
(
n
)
)
)
≈
(
(
n
↑
n
n
)
↑
↑
↑
2
)
↑
↑
(
n
↑
n
n
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
×
2
)
f
3
f
ω
(
n
)
×
2
(
f
4
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
×
3
)
f
3
f
3
(
f
ω
(
n
)
)
(
f
4
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
1
)
)
f
3
f
3
2
(
f
ω
(
n
)
)
(
f
4
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
2
)
)
f
4
2
(
f
ω
(
n
)
)
=
f
3
f
3
f
ω
(
n
)
(
f
ω
(
n
)
)
(
f
4
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
)
)
f
3
(
f
4
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
)
+
1
)
f
3
f
4
(
f
ω
(
n
)
)
(
f
4
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
)
×
2
)
f
3
f
3
(
f
4
(
f
ω
(
n
)
)
)
(
f
4
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
+
1
)
)
f
3
f
3
f
ω
(
n
)
(
f
4
(
f
ω
(
n
)
)
)
(
f
4
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
×
2
)
)
f
4
3
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
)
)
)
f
4
n
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
↑
n
∼
ψ
(
Ω
ω
+
Ω
)
f
4
n
+
1
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
+
ψ
(
Ω
ω
+
Ω
)
)
f
4
n
+
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
+
ψ
(
Ω
ω
+
Ω
+
ψ
(
Ω
ω
+
Ω
)
)
)
f
4
n
×
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
×
2
)
f
4
n
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ω
)
f
4
f
3
(
n
)
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
0
)
)
f
5
(
f
ω
(
n
)
)
=
f
4
f
ω
(
n
)
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
)
f
3
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
+
1
)
f
3
f
ω
(
n
)
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
+
ψ
(
Ω
ω
)
)
f
4
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
+
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
)
)
f
4
n
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
+
Ω
)
f
4
f
ω
(
n
)
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
×
2
)
f
4
f
ω
(
n
)
×
2
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
×
3
)
f
4
f
3
(
f
ω
(
n
)
)
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
+
1
)
)
f
4
f
4
(
f
ω
(
n
)
)
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
+
Ω
)
)
f
5
2
(
f
ω
(
n
)
)
=
f
4
f
5
(
f
ω
(
n
)
)
(
f
5
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
+
Ω
×
ψ
(
Ω
ω
)
)
)
f
5
n
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
↑
↑
↑
n
∼
ψ
(
Ω
ω
+
Ω
2
)
f
5
n
×
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
2
×
2
)
f
6
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
2
×
ψ
(
Ω
ω
)
)
f
6
n
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
3
)
f
7
n
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
Ω
4
)
f
n
(
f
ω
(
n
)
)
≈
(
n
↑
n
n
)
↑
n
n
≈
n
↑
n
(
2
n
)
∼
ψ
(
Ω
ω
×
2
)
f
n
2
(
f
ω
(
n
)
)
≈
n
↑
n
(
3
n
)
∼
ψ
(
Ω
ω
×
3
)
f
n
n
(
f
ω
(
n
)
)
≈
n
↑
n
(
n
2
)
∼
ψ
(
Ω
ω
×
ω
)
f
n
f
3
(
n
)
(
f
ω
(
n
)
)
≈
n
↑
n
n
↑
↑
n
∼
ψ
(
Ω
ω
×
ψ
(
0
)
)
f
n
+
1
(
f
ω
(
n
)
)
=
f
n
f
ω
(
n
)
(
f
ω
(
n
)
)
≈
n
↑
n
n
↑
n
n
∼
ψ
(
Ω
ω
×
ψ
(
Ω
ω
)
)
f
n
(
f
n
+
1
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
×
ψ
(
Ω
ω
)
+
Ω
ω
)
f
n
f
ω
(
n
)
(
f
n
+
1
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
×
ψ
(
Ω
ω
)
×
2
)
f
n
f
3
(
f
ω
(
n
)
)
(
f
n
+
1
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
×
ψ
(
Ω
ω
+
1
)
)
f
n
f
n
(
f
ω
(
n
)
)
(
f
n
+
1
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
×
ψ
(
Ω
ω
×
2
)
)
f
n
+
1
2
(
f
ω
(
n
)
)
≈
n
↑
n
n
↑
n
n
↑
n
n
∼
ψ
(
Ω
ω
×
ψ
(
Ω
ω
×
ψ
(
Ω
ω
)
)
)
f
n
+
1
n
(
f
ω
(
n
)
)
≈
n
↑
n
+
1
n
∼
ψ
(
Ω
ω
+
1
)
f
n
(
f
n
+
1
n
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
+
Ω
ω
)
f
n
+
1
n
+
1
(
f
ω
(
n
)
)
=
f
n
f
n
+
1
n
(
f
ω
(
n
)
)
(
f
n
+
1
n
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
+
Ω
ω
×
ψ
(
Ω
ω
+
1
)
)
f
n
+
1
n
×
2
(
f
ω
(
n
)
)
≈
n
↑
n
+
1
(
2
n
)
∼
ψ
(
Ω
ω
+
1
×
2
)
f
n
+
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
)
f
n
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
+
Ω
ω
)
f
n
f
n
+
1
n
(
f
ω
(
n
)
)
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
+
Ω
ω
×
ψ
(
Ω
ω
+
1
)
)
f
n
+
1
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
+
Ω
ω
×
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
)
)
f
n
+
1
n
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
+
Ω
ω
+
1
)
f
n
+
1
f
ω
(
n
)
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
×
2
)
f
n
+
1
f
n
+
1
(
f
ω
(
n
)
)
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
×
ψ
(
Ω
ω
)
)
)
f
n
+
1
f
n
+
1
n
(
f
ω
(
n
)
)
(
f
n
+
2
(
f
ω
(
n
)
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
+
1
)
)
f
n
+
2
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
+
1
×
ψ
(
Ω
ω
)
)
)
f
n
+
2
n
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
2
)
f
n
+
2
n
+
1
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
2
+
Ω
ω
+
1
×
ψ
(
Ω
ω
)
)
f
n
+
2
n
×
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
2
×
2
)
f
n
+
3
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
2
×
ψ
(
Ω
ω
)
)
f
n
+
3
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
2
×
ψ
(
Ω
ω
+
2
×
ψ
(
Ω
ω
)
)
)
f
n
+
3
n
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
+
3
)
f
n
×
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
×
2
)
f
n
×
2
+
1
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
×
2
×
ψ
(
Ω
ω
)
)
f
n
×
2
+
1
n
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
×
2
+
1
)
f
n
×
3
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
×
3
)
f
n
2
(
f
ω
(
n
)
)
∼
ψ
(
Ω
ω
2
)
f
f
3
(
n
)
(
f
ω
(
n
)
)
≈
n
↑
n
↑
↑
n
n
∼
ψ
(
Ω
ψ
(
0
)
)
f
f
4
(
n
)
(
f
ω
(
n
)
)
≈
n
↑
n
↑
↑
↑
n
n
∼
ψ
(
Ω
ψ
(
Ω
)
)
f
ω
2
(
n
)
=
f
f
ω
(
n
)
(
f
ω
(
n
)
)
≈
n
↑
n
↑
n
n
n
∼
ψ
(
Ω
ψ
(
Ω
ω
)
)
f
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
+
Ω
ω
)
f
n
+
1
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
+
Ω
ω
+
1
)
f
f
ω
(
n
)
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
×
2
)
f
f
ω
(
n
)
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
×
ω
)
f
f
ω
(
n
)
+
1
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
×
ψ
(
Ω
ψ
(
Ω
ω
)
)
)
f
f
ω
(
n
)
+
1
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
+
1
)
f
f
ω
(
n
)
+
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
+
ω
)
f
f
ω
(
n
)
×
2
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
)
×
2
)
f
f
3
(
f
ω
(
n
)
)
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
+
1
)
)
f
f
n
+
1
n
(
f
ω
(
n
)
)
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ω
+
1
)
)
f
ω
3
(
n
)
=
f
f
f
ω
(
n
)
(
f
ω
(
n
)
)
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
ψ
(
Ω
ψ
(
Ω
ω
)
)
)
f
ω
+
1
(
n
)
=
f
ω
n
(
n
)
∼
ψ
(
Ω
Ω
)
=
φ
(
1
,
0
,
0
)
Part 3
f
3
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
)
f
4
(
f
ω
+
1
(
n
)
)
=
f
3
f
ω
+
1
(
n
)
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
)
)
f
4
n
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
)
f
5
n
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
2
)
f
n
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
ω
)
f
n
+
1
n
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
ω
+
1
)
f
f
3
(
n
)
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
0
)
)
f
f
ω
(
n
)
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
ω
)
)
f
ω
(
f
ω
+
1
(
n
)
)
=
f
f
ω
+
1
(
n
)
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
)
)
=
φ
(
φ
(
1
,
0
,
0
)
,
1
)
f
f
ω
+
1
(
n
)
(
f
ω
(
f
ω
+
1
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
)
×
2
)
f
f
ω
+
1
(
n
)
+
1
n
(
f
ω
(
f
ω
+
1
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
)
+
1
)
f
f
3
(
f
ω
+
1
(
n
)
)
(
f
ω
(
f
ω
+
1
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
+
1
)
)
f
f
n
(
f
ω
+
1
(
n
)
)
(
f
ω
(
f
ω
+
1
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
+
Ω
ω
)
)
f
ω
2
(
f
ω
+
1
(
n
)
)
=
f
f
ω
(
f
ω
+
1
(
n
)
)
(
f
ω
(
f
ω
+
1
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
)
)
)
f
ω
n
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
×
2
)
=
φ
(
1
,
0
,
1
)
f
ω
n
×
2
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
×
3
)
f
ω
+
1
2
(
n
)
=
f
ω
f
ω
+
1
(
n
)
(
f
ω
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
)
)
f
ω
n
(
f
ω
+
1
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
)
+
Ω
Ω
)
f
ω
f
ω
+
1
(
n
)
(
f
ω
+
1
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
)
×
2
)
f
ω
f
n
(
f
ω
+
1
(
n
)
)
(
f
ω
+
1
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
+
Ω
ω
)
)
f
ω
f
ω
(
f
ω
+
1
(
n
)
)
(
f
ω
+
1
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
)
)
)
f
ω
f
ω
n
(
f
ω
+
1
(
n
)
)
(
f
ω
+
1
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
×
2
)
)
f
ω
+
1
3
(
n
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
)
)
)
f
ω
+
2
(
n
)
=
f
ω
+
1
n
(
n
)
∼
ψ
(
Ω
Ω
+
1
)
=
φ
(
1
,
1
,
0
)
f
ω
(
f
ω
+
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
ψ
(
Ω
Ω
+
1
)
)
f
ω
n
(
f
ω
+
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
Ω
)
f
ω
n
×
2
(
f
ω
+
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
Ω
×
2
)
f
ω
+
1
(
f
ω
+
2
(
n
)
)
=
f
ω
f
ω
+
2
(
n
)
(
f
ω
+
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
Ω
×
ψ
(
Ω
Ω
+
1
)
)
f
ω
f
ω
+
2
(
n
)
(
f
ω
+
1
(
f
ω
+
2
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
Ω
×
ψ
(
Ω
Ω
+
1
)
×
2
)
f
ω
f
ω
n
(
f
ω
+
2
(
n
)
)
(
f
ω
+
1
(
f
ω
+
2
(
n
)
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
Ω
×
ψ
(
Ω
Ω
+
1
+
Ω
Ω
)
)
f
ω
+
1
2
(
f
ω
+
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
+
Ω
Ω
×
ψ
(
Ω
Ω
+
1
+
Ω
Ω
×
ψ
(
Ω
Ω
+
1
)
)
)
f
ω
+
1
n
(
f
ω
+
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
1
×
2
)
f
ω
+
2
2
(
n
)
∼
ψ
(
Ω
Ω
+
1
×
ψ
(
Ω
Ω
+
1
)
)
f
ω
+
3
(
n
)
=
f
ω
+
2
n
(
n
)
∼
ψ
(
Ω
Ω
+
2
)
f
ω
+
4
(
n
)
∼
ψ
(
Ω
Ω
+
3
)
f
ω
×
2
(
n
)
=
f
ω
+
n
(
n
)
∼
ψ
(
Ω
Ω
+
ω
)
f
ω
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
+
Ω
ψ
(
Ω
Ω
+
ω
)
)
f
ω
n
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
+
Ω
Ω
)
f
ω
+
1
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
+
Ω
Ω
×
ψ
(
Ω
Ω
+
ω
)
)
f
ω
+
1
n
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
+
Ω
Ω
+
1
)
f
ω
+
2
n
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
+
Ω
Ω
+
2
)
f
ω
+
n
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
×
2
)
f
ω
+
n
+
1
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
×
ψ
(
Ω
Ω
+
ω
)
)
f
ω
+
n
+
1
n
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
+
1
)
f
ω
+
n
×
2
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ω
×
2
)
f
ω
+
f
ω
+
1
(
n
)
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
)
)
f
ω
+
f
ω
+
2
(
n
)
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
+
1
)
)
f
ω
×
2
2
(
n
)
=
f
ω
+
f
ω
+
n
(
n
)
(
f
ω
×
2
(
n
)
)
∼
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
+
ω
)
)
f
ω
×
2
3
(
n
)
∼
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
+
ω
)
)
)
f
ω
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
×
2
)
f
ω
n
(
f
ω
×
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
×
2
+
Ω
Ω
)
f
ω
×
2
n
(
f
ω
×
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
×
2
×
2
)
f
ω
×
2
+
1
2
(
n
)
∼
ψ
(
Ω
Ω
×
2
×
ψ
(
Ω
Ω
×
2
)
)
f
ω
×
2
+
2
(
n
)
∼
ψ
(
Ω
Ω
×
2
+
1
)
f
ω
×
3
(
n
)
∼
ψ
(
Ω
Ω
×
2
+
ω
)
f
ω
×
3
2
(
n
)
∼
ψ
(
Ω
Ω
×
2
+
ψ
(
Ω
Ω
×
2
+
ω
)
)
f
ω
×
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
×
3
)
f
ω
×
4
(
n
)
∼
ψ
(
Ω
Ω
×
3
+
ω
)
f
ω
×
4
+
1
(
n
)
∼
ψ
(
Ω
Ω
×
4
)
f
ω
2
(
n
)
∼
ψ
(
Ω
Ω
×
ω
)
=
φ
(
ω
,
0
,
0
)
f
ω
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
Ω
Ω
)
f
ω
×
2
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
Ω
Ω
×
2
)
f
ω
×
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
×
2
)
f
ω
×
n
+
1
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
×
ψ
(
Ω
Ω
×
ω
)
)
f
ω
×
n
+
1
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
1
)
f
ω
×
n
+
2
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
2
)
f
ω
×
n
+
n
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
ω
)
f
ω
×
n
+
f
ω
2
(
n
)
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
ψ
(
Ω
Ω
×
ω
)
)
f
ω
×
n
+
ω
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
Ω
)
f
ω
×
n
+
ω
×
2
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
+
Ω
×
2
)
f
ω
×
n
×
2
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ω
×
2
)
f
ω
2
2
(
n
)
=
f
ω
×
f
ω
2
(
n
)
(
f
ω
2
(
n
)
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
×
ω
)
)
f
ω
2
3
(
n
)
∼
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
×
ψ
(
Ω
Ω
×
ω
)
)
)
f
ω
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
2
)
=
φ
(
1
,
0
,
0
,
0
)
f
ω
n
(
f
ω
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
2
+
Ω
Ω
)
f
ω
×
2
n
(
f
ω
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
2
+
Ω
Ω
×
2
)
f
ω
×
n
(
f
ω
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
2
+
Ω
Ω
×
ω
)
f
ω
2
(
f
ω
2
+
1
(
n
)
)
=
f
ω
×
f
ω
2
+
1
(
n
)
(
f
ω
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
2
+
Ω
Ω
×
ψ
(
Ω
Ω
2
)
)
=
φ
(
φ
(
1
,
0
,
0
,
0
)
,
0
,
1
)
f
ω
2
2
(
f
ω
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
2
+
Ω
Ω
×
ψ
(
Ω
Ω
2
+
Ω
Ω
×
ψ
(
Ω
Ω
2
)
)
)
f
ω
2
n
(
f
ω
2
+
1
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
2
)
f
ω
2
+
1
2
(
n
)
∼
ψ
(
Ω
Ω
2
×
ψ
(
Ω
Ω
2
)
)
f
ω
2
+
2
(
n
)
∼
ψ
(
Ω
Ω
2
+
1
)
f
ω
2
+
ω
(
n
)
∼
ψ
(
Ω
Ω
2
+
ω
)
f
ω
2
+
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
2
+
Ω
)
f
ω
2
+
ω
+
2
(
n
)
∼
ψ
(
Ω
Ω
2
+
Ω
+
1
)
f
ω
2
+
ω
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
2
+
Ω
×
2
)
f
ω
2
×
2
(
n
)
∼
ψ
(
Ω
Ω
2
+
Ω
×
ω
)
f
ω
2
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
2
×
2
)
f
ω
2
×
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
2
×
3
)
f
ω
3
(
n
)
∼
ψ
(
Ω
Ω
2
×
ω
)
f
ω
2
×
n
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
×
2
)
f
ω
2
×
n
+
1
n
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
+
1
)
f
ω
2
×
n
+
n
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
+
ω
)
f
ω
2
×
n
+
ω
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
+
ψ
(
Ω
Ω
2
×
ω
)
)
f
ω
2
×
n
+
ω
n
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
+
Ω
)
f
ω
2
×
n
+
ω
×
n
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
+
Ω
×
ω
)
f
ω
2
×
n
+
ω
2
n
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
+
Ω
2
)
f
ω
2
×
n
×
2
(
f
ω
3
(
n
)
)
∼
ψ
(
Ω
Ω
2
×
ω
×
2
)
f
ω
3
2
(
n
)
∼
ψ
(
Ω
Ω
2
×
ψ
(
Ω
Ω
2
)
)
f
ω
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
3
)
f
ω
3
+
2
(
n
)
∼
ψ
(
Ω
Ω
3
+
1
)
f
ω
3
+
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
3
+
Ω
)
f
ω
3
+
ω
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
3
+
Ω
2
)
f
ω
3
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
3
×
2
)
f
ω
4
(
n
)
∼
ψ
(
Ω
Ω
3
×
ω
)
f
ω
4
+
1
(
n
)
∼
ψ
(
Ω
Ω
4
)
\(f_{\omega^\omega}(n)\sim\psi(\Omega^{\Omega^\omega})=\varphi(1@\omega)\)
Part 4
f
ω
ω
(
n
)
∼
ψ
(
Ω
Ω
ω
)
f
3
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
)
f
4
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
)
f
5
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
2
)
f
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
ω
)
f
ω
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
ψ
(
Ω
Ω
ω
)
)
f
ω
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
)
f
ω
+
1
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
+
1
)
f
ω
+
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
+
ω
)
f
ω
×
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
×
2
)
f
ω
×
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
×
ω
)
f
ω
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
2
)
f
ω
3
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
Ω
3
)
f
ω
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
2
)
f
ω
n
2
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
3
)
f
ω
n
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
ω
)
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
=
f
ω
n
f
ω
ω
(
n
)
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
ψ
(
Ω
Ω
ω
)
)
f
ω
n
+
1
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
)
f
ω
n
+
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
2
)
f
ω
n
+
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
ω
)
f
ω
n
+
ω
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
)
f
ω
n
+
ω
×
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
×
2
)
f
ω
n
+
ω
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
Ω
2
)
f
ω
n
×
2
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
2
)
f
ω
n
×
3
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
3
)
f
ω
n
×
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
ω
)
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
=
f
ω
n
×
f
ω
ω
(
n
)
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
)
f
ω
n
(
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
)
∼
ψ
(
Ω
Ω
ω
+
1
+
Ω
Ω
ω
)
f
ω
n
+
1
n
(
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
)
∼
ψ
(
Ω
Ω
ω
+
1
+
Ω
Ω
ω
+
1
)
f
ω
n
×
n
(
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
)
∼
ψ
(
Ω
Ω
ω
+
1
+
Ω
Ω
ω
×
ω
)
f
ω
n
+
1
2
(
f
ω
ω
(
n
)
)
=
f
ω
n
×
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
(
f
ω
n
+
1
(
f
ω
ω
(
n
)
)
)
∼
ψ
(
Ω
Ω
ω
+
1
×
2
)
f
ω
n
+
1
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
×
ω
)
f
ω
n
+
1
+
1
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
+
1
)
f
ω
n
+
1
+
ω
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
+
Ω
ω
)
f
ω
n
+
1
×
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
×
2
)
f
ω
n
+
1
×
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
1
×
ω
)
f
ω
n
+
2
n
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
+
2
)
f
ω
n
×
2
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
×
2
)
f
ω
n
2
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ω
2
)
f
ω
f
3
(
n
)
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ψ
(
0
)
)
f
ω
ω
2
(
n
)
=
f
ω
f
ω
ω
(
n
)
(
f
ω
ω
(
n
)
)
∼
ψ
(
Ω
Ω
ψ
(
Ω
Ω
ω
)
)
f
ω
ω
3
(
n
)
∼
ψ
(
Ω
Ω
ψ
(
Ω
Ω
ψ
(
Ω
Ω
ω
)
)
)
f
ω
ω
+
1
(
n
)
=
f
ω
ω
n
(
n
)
∼
ψ
(
Ω
Ω
Ω
)
f
ω
ω
+
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
1
)
f
ω
ω
+
3
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
2
)
f
ω
ω
+
ω
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
ω
)
f
ω
ω
+
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
)
f
ω
ω
+
ω
×
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
+
ω
)
f
ω
ω
+
ω
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
×
2
)
f
ω
ω
+
ω
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
×
ω
)
f
ω
ω
+
ω
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
2
)
f
ω
ω
+
ω
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
3
)
f
ω
ω
×
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
Ω
ω
)
f
ω
ω
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
×
2
)
f
ω
ω
×
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
×
3
)
f
ω
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
×
ω
)
f
ω
ω
+
1
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
1
)
f
ω
ω
+
1
+
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
1
+
Ω
)
f
ω
ω
+
1
+
ω
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
1
+
Ω
Ω
)
f
ω
ω
+
1
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
1
×
2
)
f
ω
ω
+
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
1
×
ω
)
f
ω
ω
+
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
2
)
f
ω
ω
×
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
+
ω
)
f
ω
ω
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
×
2
)
f
ω
ω
×
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
×
3
)
f
ω
ω
2
(
n
)
∼
ψ
(
Ω
Ω
Ω
×
ω
)
f
ω
ω
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
2
)
f
ω
ω
2
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
2
×
2
)
f
ω
ω
2
+
1
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
2
+
1
)
f
ω
ω
2
+
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
2
+
Ω
)
f
ω
ω
2
×
2
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
2
×
2
)
f
ω
ω
3
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
3
)
f
ω
ω
ω
(
n
)
∼
ψ
(
Ω
Ω
Ω
ω
)
f
ω
ω
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
Ω
)
f
ω
ω
ω
ω
+
1
(
n
)
∼
ψ
(
Ω
Ω
Ω
Ω
Ω
)
f
ψ
(
0
)
(
n
)
∼
ψ
(
ψ
1
(
0
)
)
f
3
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
1
)
f
4
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
)
f
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
ω
)
f
ω
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
ψ
(
ψ
1
(
0
)
)
)
f
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
)
f
ω
+
1
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
+
1
)
f
ω
×
2
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
×
2
)
f
ω
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
Ω
)
f
ω
ω
+
1
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
Ω
+
1
)
f
ω
ω
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
Ω
Ω
)
f
ω
ω
ω
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
+
Ω
Ω
Ω
Ω
Ω
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
2
)
f
ψ
(
0
)
[
n
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
3
)
f
ψ
(
0
)
[
n
]
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
ω
)
f
ψ
(
0
)
[
n
]
+
1
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
ψ
(
ψ
1
(
0
)
)
)
f
ψ
(
0
)
[
n
]
+
1
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
[
n
]
+
1
n
(
f
ψ
(
0
)
(
n
)
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
+
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
]
+
1
n
+
1
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
+
ψ
1
(
0
)
×
ψ
(
ψ
1
(
0
)
×
Ω
)
)
f
ψ
(
0
)
[
n
]
+
1
n
×
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
×
2
)
f
ψ
(
0
)
[
n
]
+
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
×
ψ
(
ψ
1
(
0
)
)
)
f
ψ
(
0
)
[
n
]
+
2
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
2
)
f
ψ
(
0
)
[
n
]
+
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
ω
)
f
ψ
(
0
)
[
n
]
+
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
×
Ω
Ω
)
f
ψ
(
0
)
[
n
]
×
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
2
)
f
ψ
(
0
)
[
n
]
×
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ω
)
f
ψ
(
0
)
[
n
]
×
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
Ω
)
f
ψ
(
0
)
[
n
]
×
ω
2
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
Ω
2
)
f
ψ
(
0
)
[
n
]
×
ω
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
Ω
Ω
)
f
ψ
(
0
)
[
n
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
]
2
+
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
+
1
)
f
ψ
(
0
)
[
n
]
2
×
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
×
2
)
f
ψ
(
0
)
[
n
]
2
×
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
×
ω
)
f
ψ
(
0
)
[
n
]
2
×
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
×
Ω
)
f
ψ
(
0
)
[
n
]
3
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
2
)
f
ψ
(
0
)
[
n
]
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ω
)
f
ψ
(
0
)
[
n
]
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
Ω
)
f
ψ
(
0
)
[
n
]
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
+
1
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
+
1
]
+
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
+
1
)
f
ψ
(
0
)
[
n
+
1
]
+
ψ
(
0
)
[
n
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
+
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
+
1
]
+
ψ
(
0
)
[
n
]
ω
n
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
+
ψ
1
(
0
)
Ω
)
f
ψ
(
0
)
[
n
+
1
]
×
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
×
2
)
f
ψ
(
0
)
[
n
+
1
]
×
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
+
1
)
f
ψ
(
0
)
[
n
+
1
]
×
ψ
(
0
)
[
n
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
+
2
)
f
ψ
(
0
)
[
n
+
1
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
×
2
)
f
ψ
(
0
)
[
n
+
1
]
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
2
)
f
ψ
(
0
)
[
n
+
1
]
ψ
(
0
)
[
n
]
+
1
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
2
+
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
+
1
]
ψ
(
0
)
[
n
]
×
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
2
×
2
)
f
ψ
(
0
)
[
n
+
1
]
ψ
(
0
)
[
n
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
3
)
f
ψ
(
0
)
[
n
+
2
]
(
f
ψ
(
0
)
(
n
)
)
=
f
ψ
(
0
)
[
n
+
1
]
ψ
(
0
)
[
n
+
1
]
(
f
ψ
(
0
)
(
n
)
)
=
f
ψ
(
0
)
[
n
+
1
]
ψ
(
0
)
[
n
]
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
+
3
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
[
n
×
2
]
(
f
ψ
(
0
)
(
n
)
)
)
∼
ψ
(
ψ
1
(
1
)
+
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
×
2
)
f
ψ
(
0
)
[
n
×
2
]
+
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
×
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
+
ψ
(
0
)
[
n
+
1
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
×
ψ
1
(
0
)
ψ
1
(
0
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
×
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
2
)
f
ψ
(
0
)
[
n
×
2
]
×
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
2
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
ψ
1
(
1
)
)
f
ψ
(
0
)
[
n
×
2
]
3
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
ψ
1
(
1
)
2
)
f
ψ
(
0
)
[
n
×
2
+
1
]
(
f
ψ
(
0
)
(
n
)
)
=
f
ψ
(
0
)
[
n
×
2
]
ψ
(
0
)
[
n
×
2
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
1
)
ψ
1
(
1
)
ψ
1
(
1
)
)
f
ψ
(
0
)
[
n
×
3
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
2
)
)
f
ψ
(
0
)
[
n
2
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
ω
)
)
f
ψ
(
0
)
[
n
2
+
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
ω
+
1
)
)
f
ψ
(
0
)
[
n
3
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
ω
2
)
)
f
ψ
(
0
)
[
n
n
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
ω
ω
)
)
f
ψ
(
0
)
[
f
3
(
n
)
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
0
)
)
)
f
ψ
(
0
)
2
(
n
)
=
f
ψ
(
0
)
[
f
ψ
(
0
)
(
n
)
]
(
f
ψ
(
0
)
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
×
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
×
ψ
1
(
1
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
(
n
)
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
2
)
f
ψ
(
0
)
[
f
ψ
(
0
)
(
n
)
+
1
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
(
n
)
+
n
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
+
1
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
(
n
)
×
2
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
×
2
)
)
f
ψ
(
0
)
[
f
3
(
f
ψ
(
0
)
(
n
)
)
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
+
1
)
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
(
n
)
)
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
×
2
)
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
[
n
×
2
]
(
f
ψ
(
0
)
(
n
)
)
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
1
)
)
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
[
n
2
]
(
f
ψ
(
0
)
(
n
)
)
]
(
f
ψ
(
0
)
2
(
n
)
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
ω
)
)
)
)
f
ψ
(
0
)
3
(
n
)
∼
ψ
(
ψ
1
(
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
)
)
)
f
ψ
(
0
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
+
ψ
1
(
0
)
)
f
ψ
(
0
)
[
n
×
2
]
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
+
ψ
1
(
1
)
)
f
ψ
(
0
)
[
f
ψ
(
0
)
(
n
)
]
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
+
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
)
f
ψ
(
0
)
(
f
ψ
(
0
)
+
1
(
n
)
)
=
f
ψ
(
0
)
[
f
ψ
(
0
)
+
1
(
n
)
]
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
+
ψ
1
(
ψ
(
ψ
1
(
Ω
)
)
)
)
f
ψ
(
0
)
2
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
+
ψ
1
(
ψ
(
ψ
1
(
Ω
)
+
ψ
1
(
ψ
(
ψ
1
(
Ω
)
)
)
)
)
)
f
ψ
(
0
)
n
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
×
2
)
f
ψ
(
0
)
n
2
(
f
ψ
(
0
)
+
1
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
)
×
ω
)
f
ψ
(
0
)
+
1
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
ψ
(
ψ
1
(
Ω
)
)
)
f
ψ
(
0
)
+
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
Ω
)
f
ψ
(
0
)
+
3
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
Ω
2
)
f
ψ
(
0
)
+
ω
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
Ω
ω
)
f
ψ
(
0
)
+
ω
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
Ω
Ω
)
f
ψ
(
0
)
+
ω
ω
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
Ω
Ω
Ω
)
f
ψ
(
0
)
×
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
×
ψ
1
(
0
)
)
f
ψ
(
0
)
×
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
2
)
f
ψ
(
0
)
×
3
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
3
)
f
ψ
(
0
)
×
ω
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ω
)
f
ψ
(
0
)
×
ω
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
Ω
)
f
ψ
(
0
)
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
0
)
)
f
ψ
(
0
)
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
)
f
ψ
(
0
)
2
+
ψ
(
0
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
+
1
)
f
ψ
(
0
)
2
×
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
×
2
)
f
ψ
(
0
)
3
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
2
)
f
ψ
(
0
)
ω
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
Ω
)
f
ψ
(
0
)
ψ
(
0
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
ψ
1
(
0
)
)
f
ψ
(
0
)
ψ
(
0
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
)
ψ
1
(
Ω
)
ψ
1
(
Ω
)
)
f
ψ
(
1
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
+
ψ
1
(
0
)
)
f
ψ
(
0
)
n
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
+
ψ
1
(
Ω
)
)
f
ψ
(
0
)
ψ
(
0
)
n
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
+
ψ
1
(
Ω
)
ψ
1
(
Ω
)
ψ
1
(
Ω
)
)
f
ψ
(
1
)
[
n
]
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
×
2
)
f
ψ
(
1
)
[
n
]
2
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
×
3
)
f
ψ
(
1
)
[
n
]
+
1
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
×
ψ
(
ψ
1
(
Ω
+
1
)
)
)
f
ψ
(
1
)
[
n
]
+
1
n
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
×
Ω
)
f
ψ
(
1
)
[
n
]
+
ψ
(
0
)
[
n
]
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
×
ψ
1
(
0
)
)
f
ψ
(
1
)
[
n
]
+
ψ
(
0
)
n
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
×
ψ
1
(
Ω
)
)
f
ψ
(
1
)
[
n
]
×
2
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
2
)
f
ψ
(
1
)
[
n
]
×
ψ
(
0
)
[
n
]
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
ψ
1
(
0
)
)
f
ψ
(
1
)
[
n
]
2
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
ψ
1
(
Ω
+
1
)
)
f
ψ
(
1
)
[
n
+
1
]
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
1
)
ψ
1
(
Ω
+
1
)
ψ
1
(
Ω
+
1
)
)
f
ψ
(
1
)
[
n
×
2
]
(
f
ψ
(
1
)
(
n
)
)
∼
ψ
(
ψ
1
(
Ω
+
2
)
)
f
ψ
(
1
)
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
+
ψ
(
ψ
1
(
Ω
)
)
)
)
f
ψ
(
1
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
)
f
ψ
(
1
)
+
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
×
Ω
)
f
ψ
(
1
)
+
ψ
(
0
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
×
ψ
1
(
Ω
)
)
f
ψ
(
1
)
×
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
2
)
f
ψ
(
1
)
×
ψ
(
0
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
ψ
1
(
Ω
)
)
f
ψ
(
1
)
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
ψ
1
(
Ω
×
2
)
)
f
ψ
(
1
)
ψ
(
1
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
)
ψ
1
(
Ω
×
2
)
ψ
1
(
Ω
×
2
)
)
f
ψ
(
2
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
2
+
1
)
)
f
ψ
(
2
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
3
)
)
f
ψ
(
3
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
3
+
1
)
)
f
ψ
(
4
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
4
+
1
)
)
f
ψ
(
ω
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
×
ω
)
)
f
ψ
(
ω
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
)
)
f
ψ
(
ω
)
+
2
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
)
×
Ω
)
f
ψ
(
ω
)
×
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
)
2
)
f
ψ
(
ω
)
2
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
)
ψ
1
(
Ω
2
)
)
f
ψ
(
ω
+
1
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
+
1
)
)
f
ψ
(
ω
+
1
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
+
Ω
)
)
f
ψ
(
ω
+
2
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
+
Ω
×
2
)
)
f
ψ
(
ω
×
2
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
2
×
2
)
)
f
ψ
(
ω
2
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
3
)
)
f
ψ
(
ω
ω
)
(
n
)
∼
ψ
(
ψ
1
(
Ω
ω
)
)
f
ψ
(
ω
ω
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
Ω
)
)
f
ψ
(
ω
ω
ω
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
Ω
Ω
Ω
)
)
f
ψ
(
ψ
(
0
)
)
(
n
)
∼
ψ
(
ψ
1
(
ψ
1
(
0
)
)
)
f
ψ
(
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
ψ
1
(
Ω
)
)
)
f
ψ
(
ψ
(
1
)
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
ψ
1
(
Ω
×
2
)
)
)
f
ψ
(
ψ
(
ψ
(
0
)
)
)
+
1
(
n
)
∼
ψ
(
ψ
1
(
ψ
1
(
ψ
1
(
Ω
)
)
)
)
f
ψ
(
Ω
)
(
n
)
∼
ψ
(
Ω
2
)
f
3
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
1
)
f
ω
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
Ω
Ω
)
f
ψ
(
0
)
[
n
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
0
)
)
f
ψ
(
0
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
)
)
f
ψ
(
1
)
[
n
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
+
1
)
)
f
ψ
(
1
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
×
2
)
)
f
ψ
(
ω
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
)
f
ψ
(
ψ
(
0
)
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
ψ
1
(
Ω
)
)
)
f
ψ
(
ψ
(
ψ
(
0
)
)
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
ψ
1
(
ψ
1
(
Ω
)
)
)
)
f
ψ
(
Ω
)
[
n
]
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
×
ω
)
f
ψ
(
Ω
)
[
n
]
+
1
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
×
Ω
)
f
ψ
(
Ω
)
[
n
]
×
2
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
2
)
f
ψ
(
Ω
)
[
n
]
×
ω
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
Ω
)
f
ψ
(
Ω
)
[
n
]
×
ψ
(
0
)
+
1
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
ψ
1
(
Ω
)
)
f
ψ
(
Ω
)
[
n
]
2
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
)
[
n
]
ψ
(
Ω
)
[
n
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
ψ
1
(
Ω
2
)
ψ
1
(
Ω
2
)
)
f
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
1
)
[
n
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
1
)
)
f
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
1
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
Ω
)
)
f
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
n
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
Ω
×
ω
)
)
f
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
ω
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
Ω
2
)
)
f
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
ψ
(
0
)
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
)
)
)
f
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
ψ
(
ψ
(
0
)
)
)
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
ψ
1
(
Ω
)
)
)
)
f
ψ
(
Ω
)
[
n
+
1
]
(
f
ψ
(
Ω
)
(
n
)
)
=
f
ψ
(
ψ
(
Ω
)
[
n
]
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
)
)
f
ψ
(
ψ
(
Ω
)
[
n
]
+
1
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
+
1
)
)
f
ψ
(
ψ
(
Ω
)
[
n
]
×
2
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
×
2
)
)
f
ψ
(
ψ
(
Ω
)
[
n
]
2
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
2
)
)
f
ψ
(
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
1
)
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
+
1
)
)
)
f
ψ
(
Ω
)
[
n
+
2
]
(
f
ψ
(
Ω
)
(
n
)
)
=
f
ψ
(
ψ
(
ψ
(
Ω
)
[
n
]
)
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
)
)
)
f
ψ
(
Ω
)
[
n
×
2
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
)
f
ψ
(
Ω
)
[
n
]
(
f
ψ
(
Ω
)
[
n
×
2
]
(
f
ψ
(
Ω
)
(
n
)
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
)
[
n
×
2
]
2
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
)
)
f
ψ
(
Ω
)
[
n
×
2
]
+
1
n
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
)
×
Ω
)
f
ψ
(
Ω
)
[
n
×
2
]
×
2
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
)
2
)
f
ψ
(
Ω
)
[
n
×
2
]
2
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
)
ψ
!
(
Ω
2
×
2
)
)
f
ψ
(
ψ
(
Ω
)
[
n
×
2
−
1
]
+
1
)
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
+
1
)
)
f
ψ
(
Ω
)
[
n
×
2
+
1
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
+
ψ
1
(
Ω
2
×
2
)
)
)
f
ψ
(
Ω
)
[
n
×
3
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
3
)
f
ψ
(
Ω
)
[
n
2
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
ω
)
f
ψ
(
Ω
)
[
n
2
+
1
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
ω
+
ψ
1
(
Ω
2
×
ω
+
ψ
1
(
Ω
2
×
ω
)
)
)
f
ψ
(
Ω
)
[
n
2
+
n
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
ω
+
Ω
2
)
f
ψ
(
Ω
)
[
n
3
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
ω
2
)
f
ψ
(
Ω
)
[
f
3
(
n
)
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
(
0
)
)
f
ψ
(
Ω
)
2
(
n
)
=
f
ψ
(
Ω
)
[
f
ψ
(
Ω
)
(
n
)
]
(
f
ψ
(
Ω
)
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
(
Ω
2
)
)
f
ψ
(
Ω
)
3
(
n
)
∼
ψ
(
Ω
2
×
ψ
(
Ω
2
×
ψ
(
Ω
2
)
)
)
f
ψ
(
Ω
)
+
1
(
n
)
=
f
ψ
(
Ω
)
n
(
n
)
∼
ψ
(
Ω
2
×
Ω
)
f
ψ
(
Ω
)
(
f
ψ
(
Ω
)
+
1
(
n
)
)
∼
ψ
(
Ω
2
×
Ω
+
Ω
2
×
ψ
(
Ω
2
×
Ω
)
)
f
ψ
(
Ω
)
n
(
f
ψ
(
Ω
)
+
1
(
n
)
)
∼
ψ
(
Ω
2
×
Ω
×
2
)
f
ψ
(
Ω
)
+
1
2
(
n
)
∼
ψ
(
Ω
2
×
Ω
×
ψ
(
Ω
2
×
Ω
)
)
f
ψ
(
Ω
)
+
2
(
n
)
∼
ψ
(
Ω
2
×
Ω
2
)
f
ψ
(
Ω
)
+
ω
(
n
)
∼
ψ
(
Ω
2
×
Ω
ω
)
f
ψ
(
Ω
)
+
ω
+
1
(
n
)
∼
ψ
(
Ω
2
×
Ω
Ω
)
f
ψ
(
Ω
)
+
ω
ω
+
1
(
n
)
∼
ψ
(
Ω
2
×
Ω
Ω
Ω
)
f
ψ
(
Ω
)
+
ψ
(
0
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
)
)
f
ψ
(
Ω
)
+
ψ
(
1
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
×
2
)
)
f
ψ
(
Ω
)
+
ψ
(
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
ψ
1
(
Ω
)
)
)
f
ψ
(
Ω
)
×
2
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
)
n
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
+
Ω
2
×
Ω
)
f
ψ
(
Ω
)
+
ψ
(
0
)
n
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
+
Ω
2
×
ψ
1
(
Ω
)
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
]
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
×
2
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
]
2
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
×
3
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
]
+
1
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
×
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
)
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
]
+
1
n
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
×
Ω
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
]
×
2
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
2
)
f
ψ
(
Ω
)
+
ψ
(
ψ
(
Ω
)
[
n
−
1
]
+
1
)
[
n
]
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
+
1
)
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
+
1
]
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
)
)
f
ψ
(
Ω
)
+
ψ
(
Ω
)
[
n
×
2
]
(
f
ψ
(
Ω
)
×
2
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
2
)
)
f
ψ
(
Ω
)
×
2
2
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
)
)
)
f
ψ
(
Ω
)
×
2
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
)
f
ψ
(
Ω
)
×
2
(
f
ψ
(
Ω
)
×
2
+
1
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
+
Ω
2
×
ψ
1
(
Ω
2
×
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
)
)
)
f
ψ
(
Ω
)
×
2
n
(
f
ψ
(
Ω
)
×
2
+
1
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
×
2
)
f
ψ
(
Ω
)
×
2
+
1
2
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
×
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
)
)
f
ψ
(
Ω
)
×
2
+
2
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
×
Ω
)
f
ψ
(
Ω
)
×
3
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
×
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
)
×
3
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
2
)
f
ψ
(
Ω
)
×
ω
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
Ω
)
f
ψ
(
Ω
)
×
ω
+
ψ
(
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
Ω
+
1
)
f
ψ
(
Ω
)
×
ψ
(
0
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
ψ
1
(
0
)
)
f
ψ
(
Ω
)
2
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
)
2
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
ψ
1
(
Ω
2
×
Ω
)
)
f
ψ
(
Ω
)
ψ
(
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
ψ
1
(
Ω
2
×
Ω
)
ψ
1
(
Ω
2
×
Ω
)
)
f
ψ
(
Ω
+
1
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
1
)
)
f
ψ
(
Ω
+
1
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
Ω
)
)
f
ψ
(
Ω
+
2
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
Ω
+
1
)
)
f
ψ
(
Ω
+
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
Ω
×
2
)
)
f
ψ
(
Ω
+
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
Ω
2
)
)
f
ψ
(
Ω
+
ψ
(
0
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
0
)
)
)
f
ψ
(
Ω
+
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
)
)
)
f
ψ
(
Ω
+
ψ
(
Ω
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
)
)
)
f
ψ
(
Ω
+
ψ
(
Ω
)
)
[
n
×
2
]
(
f
ψ
(
Ω
+
ψ
(
Ω
)
)
(
n
)
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
×
2
)
)
)
f
ψ
(
Ω
+
ψ
(
Ω
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
×
Ω
)
)
)
f
ψ
(
Ω
+
ψ
(
Ω
)
+
1
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
×
Ω
)
+
1
)
)
f
ψ
(
Ω
+
ψ
(
Ω
+
1
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
×
Ω
+
1
)
)
)
f
ψ
(
Ω
+
ψ
(
Ω
+
ψ
(
Ω
)
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
×
Ω
+
ψ
1
(
Ω
2
×
Ω
)
)
)
)
f
ψ
(
Ω
×
2
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
Ω
2
)
)
f
ψ
(
Ω
×
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
)
)
f
ψ
(
Ω
×
2
)
×
2
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
)
2
)
f
ψ
(
Ω
×
2
+
1
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
+
1
)
)
f
ψ
(
Ω
×
2
+
1
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
+
Ω
)
)
f
ψ
(
Ω
×
2
+
ψ
(
Ω
×
2
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
+
ψ
1
(
Ω
2
×
Ω
×
2
)
)
)
f
ψ
(
Ω
×
3
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
+
Ω
2
)
)
f
ψ
(
Ω
×
3
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
3
)
)
f
ψ
(
Ω
×
ω
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
ω
)
)
f
ψ
(
Ω
×
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
2
)
)
f
ψ
(
Ω
×
ω
+
1
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
2
+
1
)
)
f
ψ
(
Ω
×
ω
+
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
2
+
Ω
2
×
Ω
)
)
f
ψ
(
Ω
×
ω
×
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
2
×
2
)
)
f
ψ
(
Ω
×
ω
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
3
)
)
f
ψ
(
Ω
×
ω
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
Ω
)
)
f
ψ
(
Ω
×
ψ
(
0
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
0
)
)
)
f
ψ
(
Ω
×
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
)
)
)
f
ψ
(
Ω
×
ψ
(
1
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
+
1
)
)
)
f
ψ
(
Ω
×
ψ
(
Ω
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
)
)
)
f
ψ
(
Ω
×
ψ
(
Ω
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
)
)
)
f
ψ
(
Ω
×
ψ
(
Ω
+
1
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
+
1
)
)
)
f
ψ
(
Ω
×
ψ
(
Ω
×
2
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
×
Ω
×
2
)
)
)
f
ψ
(
Ω
×
ψ
(
Ω
×
ψ
(
0
)
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
0
)
)
)
)
f
ψ
(
Ω
×
ψ
(
Ω
×
ψ
(
Ω
)
)
)
(
n
)
∼
ψ
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
)
)
)
)
f
ψ
(
Ω
2
)
(
n
)
∼
ψ
(
Ω
2
2
)
f
ψ
(
Ω
2
)
[
n
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
+
ψ
1
(
Ω
2
2
)
)
f
ψ
(
Ω
×
ψ
(
Ω
2
)
[
n
−
1
]
+
1
)
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
+
ψ
1
(
Ω
2
2
+
1
)
)
ψ
(
Ω
2
)
[
n
]
=
ψ
(
Ω
×
ψ
(
Ω
2
)
[
n
−
1
]
)
f
ψ
(
Ω
×
ψ
(
Ω
2
)
[
n
−
1
]
+
Ω
)
[
n
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
+
Ω
2
)
f
ψ
(
Ω
×
ψ
(
Ω
2
)
[
n
−
1
]
+
Ω
)
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
+
Ω
2
×
Ω
)
f
ψ
(
Ω
×
ψ
(
Ω
2
)
[
n
−
1
]
+
Ω
×
ψ
(
Ω
)
)
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
+
Ω
2
×
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
2
)
[
n
+
1
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
+
Ω
2
×
ψ
1
(
Ω
2
2
)
)
f
ψ
(
Ω
2
)
[
n
×
2
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
2
2
×
2
)
f
ψ
(
Ω
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
Ω
)
f
ψ
(
Ω
2
)
+
2
(
n
)
∼
ψ
(
Ω
2
2
×
Ω
2
)
f
ψ
(
Ω
2
)
+
ψ
(
0
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
0
)
)
f
ψ
(
Ω
2
)
+
ψ
(
Ω
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
2
)
+
ψ
(
Ω
×
ψ
(
Ω
)
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
×
ψ
1
(
Ω
2
)
)
)
f
ψ
(
Ω
2
)
×
2
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
)
)
f
ψ
(
Ω
2
)
×
2
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
)
)
f
ψ
(
Ω
2
)
2
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
)
ψ
1
(
Ω
2
2
×
Ω
)
)
f
ψ
(
Ω
2
+
1
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
1
)
)
f
ψ
(
Ω
2
+
1
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
Ω
)
)
f
ψ
(
Ω
2
+
ψ
(
Ω
2
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
ψ
1
(
Ω
2
2
×
Ω
)
)
)
f
ψ
(
Ω
2
+
Ω
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
Ω
2
)
)
f
ψ
(
Ω
2
+
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
Ω
2
×
Ω
)
)
f
ψ
(
Ω
2
+
Ω
×
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
Ω
2
×
Ω
×
2
)
)
f
ψ
(
Ω
2
+
Ω
×
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
Ω
2
×
ψ
1
(
Ω
)
)
)
f
ψ
(
Ω
2
+
Ω
×
ψ
(
Ω
2
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
+
Ω
2
×
ψ
1
(
Ω
2
2
×
Ω
)
)
)
f
ψ
(
Ω
2
×
2
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
×
2
)
)
f
ψ
(
Ω
2
×
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
2
)
)
f
ψ
(
Ω
2
×
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
ψ
1
(
0
)
)
)
f
ψ
(
Ω
2
×
ψ
(
Ω
2
)
)
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
ψ
1
(
Ω
2
2
)
)
)
f
ψ
(
Ω
2
×
ψ
(
Ω
2
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
ψ
1
(
Ω
2
2
×
Ω
)
)
)
f
ψ
(
Ω
3
)
(
n
)
∼
ψ
(
Ω
2
3
)
f
ψ
(
Ω
4
)
(
n
)
∼
ψ
(
Ω
2
4
)
f
ψ
(
Ω
ω
)
(
n
)
∼
ψ
(
Ω
2
ω
)
f
ψ
(
Ω
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
)
f
ψ
(
Ω
ω
)
+
2
(
n
)
∼
ψ
(
Ω
2
Ω
×
Ω
)
f
ψ
(
Ω
ω
)
×
2
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
ω
)
)
f
ψ
(
Ω
ω
)
×
2
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
)
)
f
ψ
(
Ω
ω
)
×
2
+
2
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
)
×
Ω
)
f
ψ
(
Ω
ω
)
2
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
)
ψ
1
(
Ω
2
Ω
)
)
f
ψ
(
Ω
ω
+
1
)
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
+
1
)
)
f
ψ
(
Ω
ω
+
ψ
(
Ω
ω
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
+
ψ
1
(
Ω
2
Ω
)
)
)
f
ψ
(
Ω
ω
+
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
+
Ω
2
×
Ω
)
)
f
ψ
(
Ω
ω
×
2
)
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
+
Ω
2
ω
)
)
f
ψ
(
Ω
ω
×
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
×
2
)
)
f
ψ
(
Ω
ω
×
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
×
ψ
1
(
Ω
)
)
)
f
ψ
(
Ω
ω
×
ψ
(
Ω
ω
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
ψ
1
(
Ω
2
Ω
×
ψ
1
(
Ω
Ω
)
)
)
f
ψ
(
Ω
ω
+
1
)
(
n
)
∼
ψ
(
Ω
2
Ω
+
1
)
f
ψ
(
Ω
ω
×
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
×
2
)
f
ψ
(
Ω
ω
2
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
2
)
f
ψ
(
Ω
ω
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
Ω
)
f
ψ
(
Ω
ψ
(
0
)
)
(
n
)
∼
ψ
(
Ω
2
ψ
1
(
0
)
)
f
ψ
(
Ω
ψ
(
0
)
)
+
1
(
n
)
∼
ψ
(
Ω
2
ψ
1
(
Ω
)
)
f
ψ
(
Ω
ψ
(
Ω
)
)
(
n
)
∼
ψ
(
Ω
2
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
ψ
(
Ω
2
)
)
(
n
)
∼
ψ
(
Ω
2
ψ
1
(
Ω
2
2
)
)
f
ψ
(
Ω
ψ
(
Ω
ψ
(
Ω
)
)
)
(
n
)
∼
ψ
(
Ω
2
ψ
1
(
Ω
2
ψ
1
(
Ω
2
)
)
)
f
ψ
(
Ω
Ω
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
)
f
ψ
(
Ω
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
Ω
)
f
ψ
(
Ω
Ω
)
×
2
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
ψ
1
(
Ω
2
Ω
2
)
)
f
ψ
(
Ω
Ω
+
1
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
ψ
1
(
Ω
2
Ω
2
×
Ω
+
Ω
)
)
f
ψ
(
Ω
Ω
+
Ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
ψ
1
(
Ω
2
Ω
2
×
Ω
+
Ω
2
×
Ω
)
)
f
ψ
(
Ω
Ω
+
Ω
ψ
(
Ω
Ω
)
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
ψ
1
(
Ω
2
Ω
2
×
Ω
+
Ω
2
ψ
1
(
Ω
2
Ω
2
)
)
)
f
ψ
(
Ω
Ω
×
2
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
ψ
1
(
Ω
2
Ω
2
×
Ω
×
2
)
)
f
ψ
(
Ω
Ω
×
ψ
(
0
)
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
ψ
1
(
Ω
2
Ω
2
×
ψ
1
(
0
)
)
)
f
ψ
(
Ω
Ω
+
1
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
+
1
)
f
ψ
(
Ω
Ω
+
2
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
+
2
)
f
ψ
(
Ω
Ω
+
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
2
+
Ω
)
f
ψ
(
Ω
Ω
+
ψ
(
Ω
Ω
)
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
+
ψ
1
(
Ω
2
Ω
2
)
)
f
ψ
(
Ω
Ω
×
2
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
×
2
)
f
ψ
(
Ω
Ω
2
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
2
)
f
ψ
(
Ω
Ω
ω
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
ω
)
f
ψ
(
Ω
Ω
ω
)
+
1
(
n
)
∼
ψ
(
Ω
2
Ω
2
Ω
)
f
ψ
(
Ω
Ω
Ω
)
(
n
)
∼
ψ
(
Ω
2
Ω
2
Ω
2
)
f
ψ
(
ψ
1
(
0
)
)
(
n
)
∼
ψ
(
ψ
2
(
0
)
)
f
ψ
(
ψ
1
(
0
)
×
Ω
)
(
n
)
∼
ψ
(
ψ
2
(
0
)
×
Ω
2
)
f
ψ
(
ψ
1
(
0
)
2
)
(
n
)
∼
ψ
(
ψ
2
(
0
)
2
)
f
ψ
(
ψ
1
(
0
)
Ω
)
(
n
)
∼
ψ
(
ψ
2
(
0
)
Ω
2
)
f
ψ
(
ψ
1
(
0
)
ψ
1
(
0
)
)
(
n
)
∼
ψ
(
ψ
2
(
0
)
ψ
2
(
0
)
)
f
ψ
(
ψ
1
(
1
)
)
(
n
)
∼
ψ
(
ψ
2
(
1
)
)
f
ψ
(
ψ
1
(
ω
)
)
+
1
(
n
)
∼
ψ
(
ψ
2
(
Ω
)
)
f
ψ
(
ψ
1
(
ψ
(
0
)
)
)
(
n
)
∼
ψ
(
ψ
2
(
ψ
1
(
0
)
)
)
f
ψ
(
ψ
1
(
ψ
(
Ω
)
)
)
(
n
)
∼
ψ
(
ψ
2
(
ψ
1
(
Ω
2
)
)
)
f
ψ
(
ψ
1
(
ψ
(
Ω
Ω
)
)
)
(
n
)
∼
ψ
(
ψ
2
(
ψ
1
(
Ω
2
Ω
2
)
)
)
f
ψ
(
ψ
1
(
ψ
(
ψ
1
(
0
)
)
)
)
(
n
)
∼
ψ
(
ψ
2
(
ψ
1
(
ψ
2
(
0
)
)
)
)
f
ψ
(
ψ
1
(
Ω
)
)
(
n
)
∼
ψ
(
ψ
2
(
Ω
2
)
)
f
ψ
(
ψ
1
(
ψ
1
(
0
)
)
)
(
n
)
∼
ψ
(
ψ
2
(
ψ
2
(
0
)
)
)
f
ψ
(
Ω
2
)
(
n
)
∼
ψ
(
Ω
3
)
f
ψ
(
Ω
2
)
[
n
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
3
+
ψ
2
(
Ω
3
)
)
f
ψ
(
Ω
2
)
[
n
+
1
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
3
+
ψ
2
(
Ω
3
+
ψ
2
(
Ω
3
)
)
)
f
ψ
(
Ω
2
)
[
n
×
2
]
(
f
ψ
(
Ω
2
)
(
n
)
)
∼
ψ
(
Ω
3
×
2
)
f
ψ
(
Ω
2
)
+
1
(
n
)
∼
ψ
(
Ω
3
×
Ω
)
f
ψ
(
Ω
2
)
+
ψ
(
0
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
0
)
)
f
ψ
(
Ω
2
)
+
ψ
(
Ω
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
2
)
)
f
ψ
(
Ω
2
)
×
2
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
)
)
f
ψ
(
Ω
2
)
×
2
+
1
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
)
)
f
ψ
(
Ω
2
)
×
3
+
1
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
)
2
)
f
ψ
(
Ω
2
)
2
+
1
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
)
ψ
1
(
Ω
3
×
Ω
)
)
f
ψ
(
Ω
2
+
1
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
+
1
)
)
f
ψ
(
Ω
2
+
Ω
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
+
Ω
2
)
)
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
+
ψ
2
(
Ω
3
)
)
)
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
)
+
1
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
+
ψ
2
(
Ω
3
×
Ω
)
)
)
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
1
)
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
+
ψ
2
(
Ω
3
×
Ω
+
1
)
)
)
f
ψ
(
Ω
2
×
2
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
+
Ω
3
)
)
f
ψ
(
Ω
2
×
2
)
+
1
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
Ω
×
2
)
)
f
ψ
(
Ω
2
×
ψ
(
Ω
2
)
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
1
(
Ω
3
×
ψ
1
(
Ω
3
)
)
)
f
ψ
(
Ω
2
×
Ω
)
(
n
)
∼
ψ
(
Ω
3
×
Ω
2
)
f
ψ
(
Ω
2
×
ψ
1
(
0
)
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
2
(
0
)
)
f
ψ
(
Ω
2
×
ψ
1
(
Ω
2
)
)
(
n
)
∼
ψ
(
Ω
3
×
ψ
2
(
Ω
3
)
)
f
ψ
(
Ω
2
2
)
(
n
)
∼
ψ
(
Ω
3
2
)
f
ψ
(
Ω
2
Ω
2
)
(
n
)
∼
ψ
(
Ω
3
Ω
3
)
f
ψ
(
ψ
2
(
0
)
)
(
n
)
∼
ψ
(
ψ
3
(
0
)
)
f
ψ
(
Ω
3
)
(
n
)
∼
ψ
(
Ω
4
)
f
ψ
(
Ω
4
)
(
n
)
∼
ψ
(
Ω
5
)
f
ψ
(
Ω
ω
)
∼
ψ
(
Ω
ω
)
=
BO
最后修改时间
2025年8月25日 (星期一)
目录
返回顶部
目录
1
Part 1
2
Part 2
3
Part 3
4
Part 4
SGH与FGH对照
来自Googology Wiki