SGH与FGH对照:修订间差异
更多操作
创建页面,内容为“本条目展示SGH与FGH的对照 <math>g_{\varepsilon_0\times2}(n)=g_{\varepsilon_0+\varepsilon_0[n]}(n)=(n\uparrow\uparrow n)\times2</math> <math>g_{\varepsilon_0\times\omega}(n)=g_{\varepsilon_0\times n}(n)=(n\uparrow\uparrow n)\times n</math> <math>g_{\varepsilon_0\times\omega^2}(n)=g_{\varepsilon_0\times\omega\times n}(n)=(n\uparrow\uparrow n)\times n^2</math> <math>g_{\varepsilon_0\times\omega^\omega}(n)=g_{\varepsilon_0\times\omega^n}(n)=(n\u…” |
无编辑摘要 |
||
第38行: | 第38行: | ||
<math>n\uparrow\uparrow(n\times5)\sim\varepsilon_4</math> | <math>n\uparrow\uparrow(n\times5)\sim\varepsilon_4</math> | ||
n\uparrow\uparrow(n^2)\sim\varepsilon_\omega | \begin{align} & n\uparrow\uparrow(n^2)\sim\varepsilon_\omega\\& | ||
n\uparrow\uparrow(n^2+1)\sim\varepsilon_\omega^{\varepsilon_\omega} | n\uparrow\uparrow(n^2+1)\sim\varepsilon_\omega^{\varepsilon_\omega}\\& | ||
n\uparrow\uparrow(n^2+n)\sim\varepsilon_{\omega+1} | n\uparrow\uparrow(n^2+n)\sim\varepsilon_{\omega+1}\\& | ||
n\uparrow\uparrow(n^2\times2)\sim\varepsilon_{\omega\times2} | n\uparrow\uparrow(n^2\times2)\sim\varepsilon_{\omega\times2}\\& | ||
n\uparrow\uparrow(n^3)\sim\varepsilon_{\omega^2} | n\uparrow\uparrow(n^3)\sim\varepsilon_{\omega^2}\\& | ||
n\uparrow\uparrow(n^n)=n\uparrow\uparrow n\uparrow\uparrow2\sim\varepsilon_{\omega^\omega} | n\uparrow\uparrow(n^n)=n\uparrow\uparrow n\uparrow\uparrow2\sim\varepsilon_{\omega^\omega}\\& | ||
n\uparrow\uparrow(n^n+n)\sim\varepsilon_{\omega^\omega+1} | n\uparrow\uparrow(n^n+n)\sim\varepsilon_{\omega^\omega+1}\\& | ||
<nowiki>n\uparrow\uparrow(n^{n+1})\sim\varepsilon_{\omega^{\omega+1}}</nowiki> | <nowiki>n\uparrow\uparrow(n^{n+1})\sim\varepsilon_{\omega^{\omega+1}}\\&</nowiki> | ||
<nowiki>n\uparrow\uparrow(n^{n^2})\sim\varepsilon_{\omega^{\omega^2}}</nowiki> | <nowiki>n\uparrow\uparrow(n^{n^2})\sim\varepsilon_{\omega^{\omega^2}}\\&</nowiki> | ||
<nowiki>n\uparrow\uparrow n\uparrow\uparrow3\sim\varepsilon_{\omega^{\omega^\omega}}</nowiki> | <nowiki>n\uparrow\uparrow n\uparrow\uparrow3\sim\varepsilon_{\omega^{\omega^\omega}}\\&</nowiki> | ||
n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow 3\sim\varepsilon_{\varepsilon_0} | n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow 3\sim\varepsilon_{\varepsilon_0}\\& | ||
n\uparrow\uparrow (n\uparrow\uparrow n+n)\sim\varepsilon_{\varepsilon_0+1} | n\uparrow\uparrow (n\uparrow\uparrow n+n)\sim\varepsilon_{\varepsilon_0+1}\\& | ||
n\uparrow\uparrow ((n\uparrow\uparrow n)\times2)\sim\varepsilon_{\varepsilon_0\times2} | n\uparrow\uparrow ((n\uparrow\uparrow n)\times2)\sim\varepsilon_{\varepsilon_0\times2}\\& | ||
<nowiki>n\uparrow\uparrow ((n\uparrow\uparrow n)\uparrow\uparrow 2)\approx n\uparrow\uparrow n\uparrow\uparrow(n+1)\sim\varepsilon_{\varepsilon_0^{\varepsilon_0}}</nowiki> | <nowiki>n\uparrow\uparrow ((n\uparrow\uparrow n)\uparrow\uparrow 2)\approx n\uparrow\uparrow n\uparrow\uparrow(n+1)\sim\varepsilon_{\varepsilon_0^{\varepsilon_0}}\\&</nowiki> | ||
n\uparrow\uparrow n\uparrow\uparrow(n\times2)\sim\varepsilon_{\varepsilon_1} | n\uparrow\uparrow n\uparrow\uparrow(n\times2)\sim\varepsilon_{\varepsilon_1}\\& | ||
n\uparrow\uparrow n\uparrow\uparrow(n^2)\sim\varepsilon_{\varepsilon_\omega} | n\uparrow\uparrow n\uparrow\uparrow(n^2)\sim\varepsilon_{\varepsilon_\omega}\\& | ||
<nowiki>n\uparrow\uparrow n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow4\sim\varepsilon_{\varepsilon_{\varepsilon_0}}</nowiki> | <nowiki>n\uparrow\uparrow n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow4\sim\varepsilon_{\varepsilon_{\varepsilon_0}}\\&</nowiki> | ||
n\uparrow\uparrow\uparrow n\sim\zeta_0 | n\uparrow\uparrow\uparrow n\sim\zeta_0\\& | ||
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\zeta_0+1} | (n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\zeta_0+1}\\& | ||
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\times2)\sim\varepsilon_{\zeta_0+2} | (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\times2)\sim\varepsilon_{\zeta_0+2}\\& | ||
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow n)\sim\varepsilon_{\zeta_0+\varepsilon_0} | (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow n)\sim\varepsilon_{\zeta_0+\varepsilon_0}\\& | ||
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\approx n\uparrow\uparrow\uparrow(n+1)\sim\varepsilon_{\zeta_0\times2} | (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\approx n\uparrow\uparrow\uparrow(n+1)\sim\varepsilon_{\zeta_0\times2}\\& | ||
<nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\varepsilon_{\zeta_0+1}}</nowiki> | <nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\varepsilon_{\zeta_0+1}}\\&</nowiki> | ||
<nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\varepsilon_{\zeta_0\times2}}</nowiki> | <nowiki>(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\varepsilon_{\zeta_0\times2}}\\&</nowiki> | ||
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times2)\sim\zeta_1 | (n\uparrow\uparrow\uparrow n)\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times2)\sim\zeta_1\\& | ||
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow n\sim\varepsilon_{\zeta_1+1} | (n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow n\sim\varepsilon_{\zeta_1+1}\\& | ||
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\zeta_1+\zeta_0} | (n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\zeta_1+\zeta_0}\\& | ||
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow(n\times2))\sim\varepsilon_{\zeta_1\times2} | (n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow(n\times2))\sim\varepsilon_{\zeta_1\times2}\\& | ||
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times3)\sim\zeta_2 | (n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times3)\sim\zeta_2\\& | ||
n\uparrow\uparrow\uparrow(n^2)\sim\zeta_\omega | n\uparrow\uparrow\uparrow(n^2)\sim\zeta_\omega\\& | ||
n\uparrow\uparrow\uparrow(n^n)\sim\zeta_{\omega^\omega} | n\uparrow\uparrow\uparrow(n^n)\sim\zeta_{\omega^\omega}\\& | ||
n\uparrow\uparrow\uparrow(n\uparrow\uparrow n)\sim\zeta_{\varepsilon_0} | n\uparrow\uparrow\uparrow(n\uparrow\uparrow n)\sim\zeta_{\varepsilon_0}\\& | ||
n\uparrow\uparrow\uparrow n\uparrow\uparrow\uparrow n \sim\zeta_{\zeta_0} | n\uparrow\uparrow\uparrow n\uparrow\uparrow\uparrow n \sim\zeta_{\zeta_0}\\& | ||
n\uparrow\uparrow\uparrow\uparrow n \sim\eta_0 | n\uparrow\uparrow\uparrow\uparrow n \sim\eta_0\\& | ||
(n\uparrow\uparrow\uparrow\uparrow n)\uparrow\uparrow\uparrow n \sim\zeta_{\eta_0+1} | (n\uparrow\uparrow\uparrow\uparrow n)\uparrow\uparrow\uparrow n \sim\zeta_{\eta_0+1}\\& | ||
n\uparrow\uparrow\uparrow\uparrow (n\times2) \sim\eta_1 | n\uparrow\uparrow\uparrow\uparrow (n\times2) \sim\eta_1\\& | ||
n\uparrow^53 \sim\eta_{\eta_0} | n\uparrow^53 \sim\eta_{\eta_0}\\& | ||
n\uparrow^5n \sim\varphi(4,0) | n\uparrow^5n \sim\varphi(4,0)\\& | ||
n\uparrow^5(n\times2) \sim\varphi(4,1) | n\uparrow^5(n\times2) \sim\varphi(4,1)\\& | ||
n\uparrow^6 n \sim\varphi(5,0) | n\uparrow^6 n \sim\varphi(5,0)\\& | ||
n\uparrow^n n \sim\varphi(\omega,0) | n\uparrow^n n \sim\varphi(\omega,0)\\ \end{align} |
2025年8月21日 (四) 08:58的版本
\begin{align} & n\uparrow\uparrow(n^2)\sim\varepsilon_\omega\\&
n\uparrow\uparrow(n^2+1)\sim\varepsilon_\omega^{\varepsilon_\omega}\\&
n\uparrow\uparrow(n^2+n)\sim\varepsilon_{\omega+1}\\&
n\uparrow\uparrow(n^2\times2)\sim\varepsilon_{\omega\times2}\\&
n\uparrow\uparrow(n^3)\sim\varepsilon_{\omega^2}\\&
n\uparrow\uparrow(n^n)=n\uparrow\uparrow n\uparrow\uparrow2\sim\varepsilon_{\omega^\omega}\\&
n\uparrow\uparrow(n^n+n)\sim\varepsilon_{\omega^\omega+1}\\&
n\uparrow\uparrow(n^{n+1})\sim\varepsilon_{\omega^{\omega+1}}\\&
n\uparrow\uparrow(n^{n^2})\sim\varepsilon_{\omega^{\omega^2}}\\&
n\uparrow\uparrow n\uparrow\uparrow3\sim\varepsilon_{\omega^{\omega^\omega}}\\&
n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow 3\sim\varepsilon_{\varepsilon_0}\\&
n\uparrow\uparrow (n\uparrow\uparrow n+n)\sim\varepsilon_{\varepsilon_0+1}\\&
n\uparrow\uparrow ((n\uparrow\uparrow n)\times2)\sim\varepsilon_{\varepsilon_0\times2}\\&
n\uparrow\uparrow ((n\uparrow\uparrow n)\uparrow\uparrow 2)\approx n\uparrow\uparrow n\uparrow\uparrow(n+1)\sim\varepsilon_{\varepsilon_0^{\varepsilon_0}}\\&
n\uparrow\uparrow n\uparrow\uparrow(n\times2)\sim\varepsilon_{\varepsilon_1}\\&
n\uparrow\uparrow n\uparrow\uparrow(n^2)\sim\varepsilon_{\varepsilon_\omega}\\&
n\uparrow\uparrow n\uparrow\uparrow n\uparrow\uparrow n=n\uparrow\uparrow\uparrow4\sim\varepsilon_{\varepsilon_{\varepsilon_0}}\\&
n\uparrow\uparrow\uparrow n\sim\zeta_0\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\zeta_0+1}\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\times2)\sim\varepsilon_{\zeta_0+2}\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow n)\sim\varepsilon_{\zeta_0+\varepsilon_0}\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\approx n\uparrow\uparrow\uparrow(n+1)\sim\varepsilon_{\zeta_0\times2}\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow n\sim\varepsilon_{\varepsilon_{\zeta_0+1}}\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\varepsilon_{\zeta_0\times2}}\\&
(n\uparrow\uparrow\uparrow n)\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times2)\sim\zeta_1\\&
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow n\sim\varepsilon_{\zeta_1+1}\\&
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow n)\sim\varepsilon_{\zeta_1+\zeta_0}\\&
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow (n\uparrow\uparrow\uparrow(n\times2))\sim\varepsilon_{\zeta_1\times2}\\&
(n\uparrow\uparrow\uparrow(n\times2))\uparrow\uparrow \uparrow n\approx n\uparrow\uparrow\uparrow(n\times3)\sim\zeta_2\\&
n\uparrow\uparrow\uparrow(n^2)\sim\zeta_\omega\\&
n\uparrow\uparrow\uparrow(n^n)\sim\zeta_{\omega^\omega}\\&
n\uparrow\uparrow\uparrow(n\uparrow\uparrow n)\sim\zeta_{\varepsilon_0}\\&
n\uparrow\uparrow\uparrow n\uparrow\uparrow\uparrow n \sim\zeta_{\zeta_0}\\&
n\uparrow\uparrow\uparrow\uparrow n \sim\eta_0\\&
(n\uparrow\uparrow\uparrow\uparrow n)\uparrow\uparrow\uparrow n \sim\zeta_{\eta_0+1}\\&
n\uparrow\uparrow\uparrow\uparrow (n\times2) \sim\eta_1\\&
n\uparrow^53 \sim\eta_{\eta_0}\\&
n\uparrow^5n \sim\varphi(4,0)\\&
n\uparrow^5(n\times2) \sim\varphi(4,1)\\&
n\uparrow^6 n \sim\varphi(5,0)\\&
n\uparrow^n n \sim\varphi(\omega,0)\\ \end{align}