|
|
第1行: |
第1行: |
| <!-- 1. 非平凡初等嵌入 -->
| |
|
| |
|
| <mtable columnalign="left">
| |
|
| |
| <!-- 标题 -->
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mstyle mathvariant="bold" mathsize="1.2em">
| |
|
| |
| <mtext>非平凡初等嵌入</mtext>
| |
|
| |
| </mstyle>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <!-- 定义 -->
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mrow>
| |
|
| |
| <mtext>设</mtext>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mtext>为传递类且满足 ZF⁻;映射</mtext>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>:</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>→</mo>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mtext>称为初等嵌入当且仅当</mtext>
| |
|
| |
| </mrow>
| |
|
| |
| <mrow>
| |
|
| |
| <mo>∀</mo>
| |
|
| |
| <mi>φ</mi>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <msub><mi>x</mi><mn>1</mn></msub>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mo>…</mo>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <msub><mi>x</mi><mi>n</mi></msub>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mo>∀</mo>
| |
|
| |
| <msub><mi>a</mi><mn>1</mn></msub>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mo>…</mo>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <msub><mi>a</mi><mi>n</mi></msub>
| |
|
| |
| <mo>∈</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| </mrow>
| |
|
| |
| <mrow>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>⊨</mo>
| |
|
| |
| <mi>φ</mi>
| |
|
| |
| <mo>[</mo>
| |
|
| |
| <msub><mi>a</mi><mn>1</mn></msub>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mo>…</mo>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <msub><mi>a</mi><mi>n</mi></msub>
| |
|
| |
| <mo>]</mo>
| |
|
| |
| <mo>⇔</mo>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mo>⊨</mo>
| |
|
| |
| <mi>φ</mi>
| |
|
| |
| <mo>[</mo>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <msub><mi>a</mi><mn>1</mn></msub>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mo>…</mo>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <msub><mi>a</mi><mi>n</mi></msub>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>]</mo>
| |
|
| |
| </mrow>
| |
|
| |
| <mtext>;且称为</mtext>
| |
|
| |
| <mstyle mathvariant="bold">
| |
|
| |
| <mtext>非平凡</mtext>
| |
|
| |
| </mstyle>
| |
|
| |
| <mtext>当且仅当</mtext>
| |
|
| |
| <mo>∃</mo>
| |
|
| |
| <mi>x</mi>
| |
|
| |
| <mo>∈</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <mi>x</mi>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>≠</mo>
| |
|
| |
| <mi>x</mi>
| |
|
| |
| <mo>.</mo>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <mtr><mtd><mspace height="0.6em"/></mtd></mtr>
| |
|
| |
| <!-- 2. 临界点 -->
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mstyle mathvariant="bold" mathsize="1.2em">
| |
|
| |
| <mtext>临界点</mtext>
| |
|
| |
| </mstyle>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mrow>
| |
|
| |
| <mtext>对非平凡初等嵌入</mtext>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>:</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>→</mo>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mtext>,存在最小序数</mtext>
| |
|
| |
| <mi>κ</mi>
| |
|
| |
| <mtext>使得</mtext>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <mi>κ</mi>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>≠</mo>
| |
|
| |
| <mi>κ</mi>
| |
|
| |
| <mo>,记</mtext>
| |
|
| |
| <mtext>crit</mtext>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>=</mo>
| |
|
| |
| <mi>κ</mi>
| |
|
| |
| <mo>.</mo>
| |
|
| |
| </mrow>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <mtr><mtd><mspace height="0.6em"/></mtd></mtr>
| |
|
| |
| <!-- 3. 共尾性 -->
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mstyle mathvariant="bold" mathsize="1.2em">
| |
|
| |
| <mtext>共尾性</mtext>
| |
|
| |
| </mstyle>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mrow>
| |
|
| |
| <mtext>嵌入</mtext>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>:</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>→</mo>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mtext>称为共尾,当且仅当</mtext>
| |
|
| |
| <mo>∀</mo>
| |
|
| |
| <mi>y</mi>
| |
|
| |
| <mo>∈</mo>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mo>∃</mo>
| |
|
| |
| <mi>x</mi>
| |
|
| |
| <mo>∈</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>,</mo>
| |
|
| |
| <mi>y</mi>
| |
|
| |
| <mo>∈</mo>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>(</mo>
| |
|
| |
| <mi>x</mi>
| |
|
| |
| <mo>)</mo>
| |
|
| |
| <mo>.</mo>
| |
|
| |
| </mrow>
| |
|
| |
| <mtext>若</mtext>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mo>⊨</mo>
| |
|
| |
| <mtext>ZF</mtext>
| |
|
| |
| <mtext>且</mtext>
| |
|
| |
| <mi>N</mi>
| |
|
| |
| <mo>⊆</mo>
| |
|
| |
| <mi>M</mi>
| |
|
| |
| <mtext>,则任何初等嵌入都是共尾的</mtext>
| |
|
| |
| <mo>.</mo>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <mtr><mtd><mspace height="0.6em"/></mtd></mtr>
| |
|
| |
| <!-- 4. 一致性(Kunen 定理) -->
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mstyle mathvariant="bold" mathsize="1.2em">
| |
|
| |
| <mtext>一致性</mtext>
| |
|
| |
| </mstyle>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| <mtr>
| |
|
| |
| <mtd>
| |
|
| |
| <mrow>
| |
|
| |
| <mtext>在 ZFC 中不存在非平凡初等嵌入</mtext>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>:</mo>
| |
|
| |
| <mi>V</mi>
| |
|
| |
| <mo>→</mo>
| |
|
| |
| <mi>V</mi>
| |
|
| |
| <mo>.</mo>
| |
|
| |
| </mrow>
| |
|
| |
| <mrow>
| |
|
| |
| <mtext>更具体地(Kunen, 1971):对任意序数</mtext>
| |
|
| |
| <mi>λ</mi>
| |
|
| |
| <mtext>,不存在非平凡初等嵌入</mtext>
| |
|
| |
| <mi>j</mi>
| |
|
| |
| <mo>:</mo>
| |
|
| |
| <msub><mi>V</mi><mrow><mi>λ</mi><mo>+</mo><mn>2</mn></mrow></msub>
| |
|
| |
| <mo>→</mo>
| |
|
| |
| <msub><mi>V</mi><mrow><mi>λ</mi><mo>+</mo><mn>2</mn></mrow></msub>
| |
|
| |
| <mtext>。</mtext>
| |
|
| |
| </mrow>
| |
|
| |
| </mtd>
| |
|
| |
| </mtr>
| |
|
| |
| </mtable>
| |
|
| |
| <nowiki></math></nowiki>
| |