|
|
第1行: |
第1行: |
| (待补充)
| | '''追平(Catching)'''是googology中的一种现象。 |
|
| |
|
| == Hyp cos 的定义与分析 == | | == 定义 == |
| | '''注意:追平目前尚没有广泛认可的严格定义。以下定义仅供参考,并随时可能被新的理论修改。''' |
| | === [[序数记号]]之间的追平 === |
| | 设<math>f</math>,<math>g</math>是两个将序数映射到序数的函数。如果存在某个序数<math>\alpha</math>,使得 |
|
| |
|
| === 分析 - BEAF、FGH 和 SGH(第 1 部分) ===
| | <math>f(\alpha)\leq{g(\alpha)}<f(\alpha+1)</math>, |
| 你认为 SGH 第一次追上 FGH 是在 LVO 还是 <math>\psi(\Omega_\omega)</math>?
| |
|
| |
|
| 你认为 BEAF 中军团的极限是 LVO 吗?
| | 则称<math>f</math>和<math>g</math>在<math>\alpha</math>处追平,<math>\alpha</math>称为追平点。 |
|
| |
|
| We used to think the limit of a legion of BEAF is LVO, which "happens to be" the first catching ordinal some people think. Now we know the real catching ordinal, so let's analysis BEAF again. I hope to see the real strength of BEAF. Maybe it's stronger than BAN.
| | ==== 举例 ==== |
| | 对于<math>f(\alpha)=\alpha</math>,<math>g(\alpha)=2\times\alpha</math>, |
|
| |
|
| Let's go.
| | 初看之下,似乎对于有限的<math>\alpha</math>,<math>g(\alpha)=2\times{f(\alpha)}</math>,随着<math>\alpha</math>越来越大,两者的差距应该越来越远。但是对于<math>\alpha=\omega</math>,我们有 |
|
| |
|
| '''Linear arrays'''
| | <math>g(\omega)=2\times\omega=\omega=f(\omega)</math>,于是<math>f</math>和<math>g</math>在<math>\omega</math>处追平。 |
|
| |
|
| 在 SGH 中,<math>g_\alpha(n)</math> 中的 n 从不会改变因为 <math>g_{\alpha+1}(n)=g_\alpha(n)+1</math> 和 <math>g_\alpha(n)=g_{\alpha[n]}(n)</math>(对于极限序数)。那么 SGH 中的 ω 总是代表 n 它们可以自由地变为 n,并且 ω 在 SGH 中是“无序的”。在 FGH 和 HH 中我们不能这样做,因为 n 正在变化。
| | 从这个例子中可以直观地感受“追平”:较大的序数“抹平”了其下的增长速度差异。 |
| {| class="article-table" border="0" cellpadding="1" cellspacing="1" style="WIDTH: 660px"
| |
| ! scope="col" |BEAF
| |
| ! scope="col" |FGH
| |
| ! scope="col" |SGH 序数
| |
| |-
| |
| |{n,n,2}
| |
| |<math>f_3(n)</math>
| |
| |<math>\varepsilon_0</math>
| |
| |-
| |
| |{n,n+1,2}
| |
| |<math>f_3(n+1)\approx f_2f_3(n)</math>
| |
| |<math>\varepsilon_0^\omega</math>
| |
| |-
| |
| |{n,2n,2}
| |
| |<math>f_3(2n)\approx f_2^nf_3(n)</math>
| |
| |<math>\varepsilon_1</math>
| |
| |-
| |
| |{n,{n,n,2},2}={n,3,3}
| |
| |<math>f_3^2(n)</math>
| |
| |<math>\varepsilon_{\varepsilon_0}</math>
| |
| |-
| |
| |{n,n,3}
| |
| |<math>f_4(n)</math>
| |
| |<math>\zeta_0</math>
| |
| |-
| |
| |{n,n+1,3}
| |
| |<math>f_4(n+1)\approx f_3f_4(n)</math>
| |
| |<math>\varepsilon_{\zeta_0+1}</math>
| |
| |-
| |
| |{n,2n,3}
| |
| |<math>f_4(2n)\approx f_3^nf_4(n)</math>
| |
| |<math>\zeta_{\zeta_0}</math>
| |
| |-
| |
| |{n,n,4}
| |
| |<math>f_5(n)</math>
| |
| |<math>\varphi(3,0)</math>
| |
| |-
| |
| |{n,n,n}
| |
| |<math>f_\omega(n)</math>
| |
| |<math>\varphi(\omega,0)</math>
| |
| |-
| |
| |{n,n,n+1}
| |
| |<math>f_\omega(n+1)</math>
| |
| |<math>\varphi(\omega+1,0)</math>
| |
|
| |
|
| (ω+1 可以变为 1+ω 和 n+1,因为它是无序的)
| | 另外一个追平的例子是BOCF和MOCF,它们在[[HCO]]追平。 |
| |-
| |
| |{n,n,2n}
| |
| |<math>f_\omega(2n)</math>
| |
| |<math>\varphi(\omega2,0)</math>
| |
| |-
| |
| |<nowiki>{n,n,{n,n,n}}={n,3,1,2}</nowiki>
| |
| |<math>f_\omega^2(n)</math>
| |
| |<math>\varphi(\varphi(\omega,0),0)</math>
| |
| |-
| |
| |{n,n,1,2}
| |
| |<math>f_{\omega+1}(n)</math>
| |
| |<math>\Gamma_0</math>
| |
| |-
| |
| |{n,n+1,1,2}
| |
| |<math>f_{\omega+1}(n+1)\approx f_\omega f_{\omega+1}(n)</math>
| |
| |<math>\varphi(\Gamma_0,\Gamma_0+1)</math>
| |
| |-
| |
| |{n,2n,1,2}
| |
| |<math>f_{\omega+1}(2n)\approx f_\omega^nf_{\omega+1}(n)</math>
| |
| |<math>\Gamma_1</math>
| |
| |-
| |
| |{n,3,2,2}
| |
| |<math>f^2_{\omega+1}(n)</math>
| |
| |<math>\Gamma_{\Gamma_0}</math>
| |
| |-
| |
| |{n,n,2,2}
| |
| |<math>f_{\omega+2}(n)</math>
| |
| |<math>\varphi(1,1,0)</math>
| |
| |-
| |
| |{n,n,3,2}
| |
| |<math>f_{\omega+3}(n)</math>
| |
| |<math>\varphi(1,2,0)</math>
| |
| |-
| |
| |{n,n,n,2}
| |
| |<math>f_{\omega2}(n)</math>
| |
| |<math>\varphi(1,\omega,0)</math>
| |
| |-
| |
| |{n,n,2n,2}
| |
| |<math>f_{\omega2}(2n)</math>
| |
| |<math>\varphi(1,\omega2,0)</math>
| |
| |-
| |
| |{n,3,1,3}
| |
| |<math>f^2_{\omega2}(n)</math>
| |
| |<math>\varphi(1,\varphi(1,\omega,0),0)</math>
| |
| |-
| |
| |{n,n,1,3}
| |
| |<math>f_{\omega2+1}(n)</math>
| |
| |<math>\varphi(2,0,0)</math>
| |
| |-
| |
| |{n,n,2,3}
| |
| |<math>f_{\omega2+2}(n)</math>
| |
| |<math>\varphi(2,1,0)</math>
| |
| |-
| |
| |{n,n,1,4}
| |
| |<math>f_{\omega3+1}(n)</math>
| |
| |<math>\varphi(3,0,0)</math>
| |
| |-
| |
| |{n,n,n,n}
| |
| |<math>f_{\omega^2}(n)</math>
| |
| |<math>\varphi(\omega,0,0)</math>
| |
| |-
| |
| |{n,n,1,1,2}
| |
| |<math>f_{\omega^2+1}(n)</math>
| |
| |<math>\varphi(1,0,0,0)</math>
| |
| |-
| |
| |{n,n,2,1,2}
| |
| |<math>f_{\omega^2+2}(n)</math>
| |
| |<math>\varphi(1,0,1,0)</math>
| |
| |-
| |
| |{n,n,1,2,2}
| |
| |<math>f_{\omega^2+\omega+1}(n)</math>
| |
| |<math>\varphi(1,1,0,0)</math>
| |
| |-
| |
| |{n,n,1,1,3}
| |
| |<math>f_{\omega^22+1}(n)</math>
| |
| |<math>\varphi(2,0,0,0)</math>
| |
| |-
| |
| |{n,n,1,1,1,2}
| |
| |<math>f_{\omega^3+1}(n)</math>
| |
| |<math>\varphi(1,0,0,0,0)</math>
| |
| |-
| |
| |{n,n,1,1,1,1,2}
| |
| |<math>f_{\omega^4+1}(n)</math>
| |
| |<math>\varphi(1,0,0,0,0,0)</math>
| |
| |-
| |
| |{n,n(1)2}={n,2,1,...1,2} 2 a.p n+1<ref>a.p 表示位于第……位</ref>
| |
| |<math>f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega)</math>
| |
| |-
| |
| |{n,3,1,...1,2} 2 a.p n+1
| |
| |<math>f_{\omega^n}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega,1)</math>
| |
| |-
| |
| |{n,n,1,...1,2} 2 a.p n+1
| |
| |<math>f^n_{\omega^n}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega,\omega)</math>
| |
| |-
| |
| |{n,3,2,...1,2} a.p n+1
| |
| |<math>f_{\omega^n+1}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega,\theta(\Omega^\omega))</math>
| |
| |-
| |
| |{n,n,2,...1,2} a.p n+1
| |
| |<math>f^n_{\omega^n+1}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+1)</math>
| |
| |-
| |
| |{n,n,3,...1,2} 2 a.p n+1
| |
| |<math>f^n_{\omega^n+2}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+2)</math>
| |
| |-
| |
| |{n,n,n,1,...1,2} 2 a.p n+1
| |
| |<math>f_{\omega^n+n}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\omega)</math>
| |
| |-
| |
| |{n,n,1,2,1,...1,2} a.p n+1
| |
| |<math>f^n_{\omega^n+\omega}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\Omega)</math>
| |
| |-
| |
| |{n,n,n,2,1,...1,2} a.p n+1
| |
| |<math>f_{\omega^n+\omega+n}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\Omega+\omega)</math>
| |
| |-
| |
| |{n,n,1,3,1,...1,2} 2 a.p n+1
| |
| |<math>f^n_{\omega^n+\omega2}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\Omega2)</math>
| |
| |-
| |
| |{n,n,1,n,1,...1,2} 2 a.p n+1
| |
| |<math>f_{\omega^n+\omega n}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\Omega\omega)</math>
| |
| |-
| |
| |{n,n,1,1,2,1,...1,2} a.p n+1
| |
| |<math>f^n_{\omega^n+\omega^2}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\Omega^2)</math>
| |
| |-
| |
| |{n,n,1,1,1,2,1,...1,2} a.p n+1
| |
| |<math>f^n_{\omega^n+\omega^3}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega+\Omega^3)</math>
| |
| |-
| |
| |{n,n,1,...1,3} 3 a.p n+1
| |
| |<math>f_{\omega^n2}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega2)</math>
| |
| |-
| |
| |{n,n,1,...1,4} 4 a.p n+1
| |
| |<math>f_{\omega^n3}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega3)</math>
| |
| |-
| |
| |{n,n+1(1)2}={n,n,n,...n} a.p n+1
| |
| |<math>f_{\omega^\omega}(n+1)\approx f_{\omega^nn}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^\omega\omega)</math>
| |
| |-
| |
| |{n,n,1,...1,2} 2 a.p n+2
| |
| |<math>f^n_{\omega^{n+1}}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\omega+1})</math>
| |
| |-
| |
| |{n,n+2(1)2}={n,n,n,...n} a.p n+2
| |
| |<math>f_{\omega^\omega}(n+2)\approx f_{\omega^{n+1}n}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\omega+1}\omega)</math>
| |
| |-
| |
| |{n,n,1,...1,2} 2 a.p n+3
| |
| |<math>f^n_{\omega^{n+2}}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\omega+2})</math>
| |
| |-
| |
| |{n,2n(1)2}
| |
| |<math>f_{\omega^\omega}(2n)\approx f_{\omega^{2n}}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\omega2})</math>
| |
| |-
| |
| |{n,{n,n,2}(1)2}
| |
| |<math>f_{\omega^\omega}f_3(n)\approx f_{\omega^{f_3(n)}}f_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\varepsilon_0})</math>
| |
| |-
| |
| |{n,3,2(1)2}
| |
| |<math>f^2_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\theta(\Omega^\omega)})</math>
| |
| |-
| |
| |{n,4,2(1)2}
| |
| |<math>f^3_{\omega^\omega}(n)</math>
| |
| |<math>\theta(\Omega^{\theta(\Omega^{\theta(\Omega^\omega)})})</math>
| |
| |-
| |
| |{n,n,2(1)2}
| |
| |<math>f_{\omega^\omega+1}(n)</math>
| |
| |<math>\theta(\Omega^\Omega)</math>
| |
| |}
| |
| 当 SGH 将其部分序数从 2,3,4,… 增长到 ω(这一新点被称为“活跃点”)时,若同时 FGH 的序数增长至一个极限序数,那么 FGH 序数增加 1 的操作会将 SGH 的活跃点(即新的 ω)通过序数塌缩函数转换为 Ω。
| |
|
| |
|
| '''从维度到四维数阵'''
| | === [[增长层级]]之间的追平 === |
| | 理论上,可以把增长层级的每个函数都视为序数映射到序数的函数(只不过这里映射得到的一定是自然数),然后仿照上文定义。 |
|
| |
|
| 问题:θ(Ω^Ω) 的活跃点是什么?我找不到任何 ω 的踪迹。
| | 不过我们在此给出另外一个定义: |
|
| |
|
| 回答:在序数塌缩函数中,Ω 表示 ω 的嵌套(或 SGH 中的 n 层嵌套)。例如,θ(Ω^θ(Ω^Ω),θ(Ω^Ω)+1) 表示 ω+1 层嵌套(或 SGH 中的 n+1 层嵌套),而 θ(Ω^Ω,1) 则表示 ω2 层嵌套(或 SGH 中的 2n 层嵌套)。
| | 对于两个增长层级<math>f_\alpha</math>和<math>g_\alpha</math>,如果对于某个序数<math>\beta</math>, |
| {| class="article-table" border="0" cellpadding="1" cellspacing="1" style="WIDTH: 660px; HEIGHT: 660px"
| |
| ! scope="col" |BEAF
| |
| ! scope="col" |FGH
| |
| ! scope="col" |SGH 序数
| |
| |-
| |
| |{n,2n,2(1)2}
| |
| |<math>f_{\omega^\omega+1}(2n)</math>
| |
| |<math>\theta(\Omega^\Omega,1)</math>
| |
| |-
| |
| |{n,n,3(1)2}
| |
| |<math>f_{\omega^\omega+2}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+1)</math>
| |
| |-
| |
| |{n,n,4(1)2}
| |
| |<math>f_{\omega^\omega+3}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+2)</math>
| |
| |-
| |
| |{n,n,n(1)2}
| |
| |<math>f_{\omega^\omega+\omega}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+\omega)</math>
| |
| |-
| |
| |{n,n,1,2(1)2}
| |
| |<math>f_{\omega^\omega+\omega+1}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+\Omega)</math>
| |
| |-
| |
| |{n,n,1,3(1)2}
| |
| |<math>f_{\omega^\omega+\omega2+1}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+\Omega2)</math>
| |
| |-
| |
| |{n,n,1,1,2(1)2}
| |
| |<math>f_{\omega^\omega+\omega^2+1}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+\Omega^2)</math>
| |
| |-
| |
| |{n,n(1)3}
| |
| |<math>f_{\omega^\omega2}(n)</math>
| |
| |<math>\theta(\Omega^\Omega+\Omega^\omega)</math>
| |
| |-
| |
| |{n,n,2(1)3}
| |
| |<math>f_{\omega^\omega2+1}(n)</math>
| |
| |<math>\theta(\Omega^\Omega2)</math>
| |
| |-
| |
| |{n,n,2(1)4}
| |
| |<math>f_{\omega^\omega3+1}(n)</math>
| |
| |<math>\theta(\Omega^\Omega3)</math>
| |
| |-
| |
| |{n,n(1)n}
| |
| |<math>f_{\omega^{\omega+1}}(n)</math>
| |
| |<math>\theta(\Omega^\Omega\omega)</math>
| |
| |-
| |
| |{n,n(1)1,2}
| |
| |<math>f_{\omega^{\omega+1}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega+1})</math>
| |
| |-
| |
| |{n,n(1)1,3}
| |
| |<math>f_{\omega^{\omega+1}2+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega+1}2)</math>
| |
| |-
| |
| |{n,n(1)1,1,2}
| |
| |<math>f_{\omega^{\omega+2}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega+2})</math>
| |
| |-
| |
| |{n,n(1)1,1,1,2}
| |
| |<math>f_{\omega^{\omega+3}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega+3})</math>
| |
| |-
| |
| |{n,n(1)(1)2}
| |
| |<math>f_{\omega^{\omega2}}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega+\omega})</math>
| |
| |-
| |
| |{n,n,2(1)(1)2}
| |
| |<math>f_{\omega^{\omega2}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega2})</math>
| |
| |-
| |
| |{n,n,2(1)(1)(1)2}
| |
| |<math>f_{\omega^{\omega3}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega3})</math>
| |
| |-
| |
| |{n,n(2)2}=X^2&n
| |
| |<math>f_{\omega^{\omega^2}}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega\omega})</math>
| |
| |-
| |
| |{n,n,2(2)2}
| |
| |<math>f_{\omega^{\omega^2}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^2})</math>
| |
| |-
| |
| |{n,n(3)2}=X^3&n
| |
| |<math>f_{\omega^{\omega^3}}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^2\omega})</math>
| |
| |-
| |
| |{n,n(0,1)2}=X^X&n
| |
| |<math>f_{\omega^{\omega^\omega}}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^\omega})</math>
| |
| |-
| |
| |{n,n,2(0,1)2}
| |
| |<math>f_{\omega^{\omega^\omega}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^\Omega})</math>
| |
| |-
| |
| |{n,n,2(0,1)3}
| |
| |<math>f_{\omega^{\omega^\omega}2+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^\Omega}2)</math>
| |
| |-
| |
| |{n,n,2(0,1)(0,1)2}
| |
| |<math>f_{\omega^{\omega^\omega2}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^\Omega2})</math>
| |
| |-
| |
| |{n,n,2(1,1)2}
| |
| |<math>f_{\omega^{\omega^{\omega+1}}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^{\Omega+1}})</math>
| |
| |-
| |
| |{n,n,2(0,2)2}
| |
| |<math>f_{\omega^{\omega^{\omega2}}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^{\Omega2}})</math>
| |
| |-
| |
| |{n,n,2(0,0,1)2}
| |
| |<math>f_{\omega^{\omega^{\omega^2}}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^{\Omega^2}})</math>
| |
| |-
| |
| |{n,n,2((1)1)2}
| |
| |<math>f_{\omega^{\omega^{\omega^\omega}}+1}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^{\Omega^\Omega}})</math>
| |
| |-
| |
| |{n,n((0,1)1)2}=X^X^X^X&n
| |
| |<math>f_{\omega^{\omega^{\omega^{\omega^\omega}}}}(n)</math>
| |
| |<math>\theta(\Omega^{\Omega^{\Omega^{\Omega^\omega}}})</math>
| |
| |-
| |
| |X^^X&n
| |
| |<math>f_{\varepsilon_0}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega+1})=\theta(\theta_1(1))</math>
| |
| |-
| |
| |{n,n,2(X^^X)2}
| |
| |<math>f_{\varepsilon_0+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2})=\theta(\theta_1(1,\Omega))</math>
| |
| |-
| |
| |{n,n,2(X^^X)3}
| |
| |<math>f_{\varepsilon_02+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2}2)</math>
| |
| |-
| |
| |{n,n,2(X^^X)(X^^X)2}
| |
| |<math>f_{\varepsilon_0^2+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2}^2)</math>
| |
| |-
| |
| |{n,n,2(X^^X*X)2}
| |
| |<math>f_{\varepsilon_0^\omega+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2}^\Omega)</math>
| |
| |-
| |
| |{n,n,2((X^^X)^2)2}
| |
| |<math>f_{\varepsilon_0^{\varepsilon_0}+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2}^{\varepsilon_{\Omega2}})</math>
| |
| |-
| |
| |{n,n,2((X^^X)^X)2}
| |
| |<math>f_{\varepsilon_0^{\varepsilon_0^\omega}+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2}^{\varepsilon_{\Omega2}^\Omega})</math>
| |
| |-
| |
| |(X^^X)^(X^^X)&n ≈ X^^(X+1)&n
| |
| |<math>f_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2}^{\varepsilon_{\Omega2}^{\varepsilon_{\Omega+1}}})</math>
| |
| |-
| |
| |X^^(2X)&n
| |
| |<math>f_{\varepsilon_1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega2+1})</math>
| |
| |-
| |
| |{n,n,2(X^^(2X))2}
| |
| |<math>f_{\varepsilon_1+1}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega3})</math>
| |
| |-
| |
| |X^^(3X)&n
| |
| |<math>f_{\varepsilon_2}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega3+1})</math>
| |
| |-
| |
| |X^^(X^2)&n
| |
| |<math>f_{\varepsilon_\omega}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega\omega})</math>
| |
| |-
| |
| |X^^(X^3)&n
| |
| |<math>f_{\varepsilon_{\omega^2}}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega^2\omega})</math>
| |
| |-
| |
| |X^^(X^X)&n
| |
| |<math>f_{\varepsilon_{\omega^\omega}}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega^\omega})</math>
| |
| |-
| |
| |X^^X^^3&n
| |
| |<math>f_{\varepsilon_{\omega^{\omega^\omega}}}(n)</math>
| |
| |<math>\theta(\varepsilon_{\Omega^{\Omega^\omega}})</math>
| |
| |-
| |
| |X^^X^^X&n=X^^^3&n
| |
| |<math>f_{\varepsilon_{\varepsilon_0}}(n)</math>
| |
| |<math>\theta(\varepsilon_{\varepsilon_{\Omega+1}})</math>
| |
| |}
| |
| 令人惊讶的是,&n 的作用是——将 SGH 中的增长速率大致映射到 FGH 中的相同序数!
| |
|
| |
|
| 这意味着,如果一个数阵函数 p(n) 在 SGH 中的增长速率为 α,那么 p(X)&n 在 FGH 中的增长速率也约为 α(更准确地说,是 FGH 中的 ω^α)。普通数阵对 SGH 的影响,相当于(X-数阵)&n 对 FGH 的影响。
| | <math>f_\beta</math>在增长层级<math>g_\alpha</math>下的增长率为<math>\beta</math>, |
|
| |
|
| === 线性数阵的数阵 ===
| | 则称<math>f_\alpha</math>和<math>g_\alpha</math>在<math>\beta</math>追平。 |
| {| class="article-table" border="0" cellpadding="1" cellspacing="1" style="WIDTH: 660px; HEIGHT: 660px"
| |
| ! scope="col" |BEAF
| |
| ! scope="col" |FGH 序数
| |
| ! scope="col" |SGH 序数
| |
| |-
| |
| |X^^^X&n
| |
| |<math>\zeta_0</math>
| |
| |<math>\theta(\zeta_{\Omega+1})</math>
| |
| |-
| |
| |X^^^(2X)&n
| |
| |<math>\zeta_1</math>
| |
| |<math>\theta(\zeta_{\Omega2+1})</math>
| |
| |-
| |
| |X^^^^3&n
| |
| |<math>\zeta_{\zeta_0}</math>
| |
| |<math>\theta(\zeta_{\zeta_{\Omega+1}})</math>
| |
| |-
| |
| |X^^^^X&n
| |
| |<math>\varphi(3,0)</math>
| |
| |<math>\theta(\varphi(3,\Omega+1))=\theta(\theta_1(3))</math>
| |
| |-
| |
| |{X,X,5}&n
| |
| |<math>\varphi(4,0)</math>
| |
| |<math>\theta(\theta_1(4))</math>
| |
| |-
| |
| |{X,X,X}&n
| |
| |<math>\varphi(\omega,0)</math>
| |
| |<math>\theta(\theta_1(\omega))</math>
| |
| |-
| |
| |{X,X,X}^{X,X,X}&n
| |
| |<math>\varphi(\omega,0)^{\varphi(\omega,0)^{\varphi(\omega,0)}}</math>
| |
| |<math>\theta(\theta_1(\Omega)^{\theta_1(\Omega)^{\theta_1(\omega)}})</math>
| |
| |-
| |
| |{X,X,X}^^X&n
| |
| |<math>\varepsilon_{\varphi(\omega,0)+1}</math>
| |
| |<math>\theta(\theta(1,\theta_1(\Omega)+1))</math>
| |
| |-
| |
| |{X,X,X}^^^X&n
| |
| |<math>\zeta_{\varphi(\omega,0)+1}</math>
| |
| |<math>\theta(\theta(2,\theta_1(\Omega)+1))</math>
| |
| |-
| |
| |<nowiki>{{X,X,X},X,X}&n ≈ {X,2X,X}&n</nowiki>
| |
| |<math>\varphi(\omega,1)</math>
| |
| |<math>\theta(\theta(\omega,\theta_1(\Omega)+1))</math>
| |
| |-
| |
| |{n,n,2({X,2X,X})2}
| |
| |<math>\varphi(\omega,1)+1</math>
| |
| |<math>\theta(\theta_1(\Omega,1))</math>
| |
| |-
| |
| |{n,n,2({X,3X,X})2}
| |
| |<math>\varphi(\omega,2)+1</math>
| |
| |<math>\theta(\theta_1(\Omega,2))</math>
| |
| |-
| |
| |{n,n,2({X,{X,X,X},X})2}
| |
| |<math>\varphi(\omega,\varphi(\omega,0))+1</math>
| |
| |<math>\theta(\theta_1(\Omega,\theta_1(\Omega)))</math>
| |
| |-
| |
| |{X,X,X+1}&n
| |
| |<math>\varphi(\omega+1,0)</math>
| |
| |<math>\theta(\theta_1(\Omega+1))</math>
| |
| |-
| |
| |{X,X,X+2}&n
| |
| |<math>\varphi(\omega+2,0)</math>
| |
| |<math>\theta(\theta_1(\Omega+2))</math>
| |
| |-
| |
| |{X,X,2X}&n
| |
| |<math>\varphi(\omega2,0)</math>
| |
| |<math>\theta(\theta_1(\Omega+\omega))</math>
| |
| |-
| |
| |{X,X,X^2}&n
| |
| |<math>\varphi(\omega^2,0)</math>
| |
| |<math>\theta(\theta_1(\Omega\omega))</math>
| |
| |-
| |
| |{X,X,X^X}&n
| |
| |<math>\varphi(\omega^\omega,0)</math>
| |
| |<math>\theta(\theta_1(\Omega^\omega))</math>
| |
| |-
| |
| |{X,3,1,2}&n
| |
| |<math>\varphi(\varphi(\omega,0),0)</math>
| |
| |<math>\theta(\theta_1(\theta_1(\omega)))</math>
| |
| |-
| |
| |{X,X,1,2}&n
| |
| |<math>\Gamma_0</math>
| |
| |<math>\theta(\theta_1(\Omega_2))=\theta(\Omega_2)</math>
| |
| |-
| |
| |{X,2X,1,2}&n
| |
| |<math>\Gamma_1</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2,1))</math>
| |
| |-
| |
| |{X,X^X,1,2}&n
| |
| |<math>\Gamma_{\omega^\omega}</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2,\Omega^\omega))</math>
| |
| |-
| |
| |{X,3,2,2}&n
| |
| |<math>\Gamma_{\Gamma_0}</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2,\theta_1(\Omega_2)))</math>
| |
| |-
| |
| |{X,X,2,2}&n
| |
| |<math>\varphi(1,1,0)</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2+1))</math>
| |
| |-
| |
| |{X,3,3,2}&n
| |
| |<math>\varphi(1,1,\varphi(1,1,0))</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2+1,\theta_1(\Omega_2+1)))</math>
| |
| |-
| |
| |{X,X,3,2}&n
| |
| |<math>\varphi(1,2,0)</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2+2))</math>
| |
| |-
| |
| |{X,X,X,2}&n
| |
| |<math>\varphi(1,\omega,0)</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2+\omega))</math>
| |
| |-
| |
| |{X,3,1,3}&n
| |
| |<math>\varphi(1,\varphi(1,\omega,0),0)</math>
| |
| |<math>\theta(\Omega_2+\theta_1(\Omega_2+\theta_1(\Omega_2+\omega)))</math>
| |
| |-
| |
| |{X,X,1,3}&n
| |
| |<math>\varphi(2,0,0)</math>
| |
| |<math>\theta(\Omega_22)</math>
| |
| |-
| |
| |{X,X,2,3}&n
| |
| |<math>\varphi(2,1,0)</math>
| |
| |<math>\theta(\Omega_22+\theta_1(\Omega_22+1))</math>
| |
| |-
| |
| |{X,X,1,4}&n
| |
| |<math>\varphi(3,0,0)</math>
| |
| |<math>\theta(\Omega_23)</math>
| |
| |-
| |
| |{X,X,X,X}&n
| |
| |<math>\varphi(\omega,0,0)</math>
| |
| |<math>\theta(\Omega_2\omega)</math>
| |
| |-
| |
| |{X,X,1,1,2}&n
| |
| |<math>\varphi(1,0,0,0)</math>
| |
| |<math>\theta(\Omega_2^2)</math>
| |
| |-
| |
| |{X,X,1,1,3}&n
| |
| |<math>\varphi(2,0,0,0)</math>
| |
| |<math>\theta(\Omega_2^22)</math>
| |
| |-
| |
| |{X,X,1,1,1,2}&n
| |
| |<math>\varphi(1,0,0,0,0)</math>
| |
| |<math>\theta(\Omega_2^3)</math>
| |
| |-
| |
| |{X,X,1,1,1,1,2}&n
| |
| |<math>\varphi(1,0,0,0,0,0)</math>
| |
| |<math>\theta(\Omega_2^4)</math>
| |
| |-
| |
| |{X,X(1)2}&n={X,X,...,X}&n 有 X 个 X ={X,2,1,...1,2}&n a.p X+1
| |
| |<math>\theta(\Omega^\omega)</math>
| |
| |<math>\theta(\Omega_2^\omega)</math>
| |
| |-
| |
| |{X,X(1)2}^^X&n
| |
| |<math>\varepsilon_{\theta(\Omega^\omega)+1}</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(1,\theta_1(\Omega_2^\Omega)+1))</math>
| |
| |-
| |
| |<nowiki>{{X,X(1)2},X,1,2}&n</nowiki>
| |
| |<math>\Gamma_{\theta(\Omega^\omega)+1}</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(\Omega_2,\theta_1(\Omega_2^\Omega)+1))</math>
| |
| |-
| |
| |<nowiki>{{X,X(1)2},X(1)2}&n={X,3,1,...1,2}&n 2 a.p X+1</nowiki>
| |
| |<math>\theta(\Omega^\omega,1)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(\Omega_2^\Omega,1))</math>
| |
| |-
| |
| |{X,4,1,...1,2}&n 2 a.p X+1
| |
| |<math>\theta(\Omega^\omega,2)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(\Omega_2^\Omega,2))</math>
| |
| |-
| |
| |{X,3,2,1,...1,2}&n a.p X+1
| |
| |<math>\theta(\Omega^\omega,\theta(\Omega^\omega))</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(\Omega_2^\Omega,\theta_1(\Omega_2^\omega)))</math>
| |
| |-
| |
| |{X,X,2,1,...1,2}&n a.p X+1
| |
| |<math>\theta(\Omega^\omega+1)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(\Omega_2^\Omega+1))</math>
| |
| |-
| |
| |{X,X,3,1,...1,2}&n 2 a.p X+1
| |
| |<math>\theta(\Omega^\omega+2)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\theta_1(\Omega_2^\Omega+2))</math>
| |
| |-
| |
| |{X,X,1,2,1,...1,2}&n a.p X+1
| |
| |<math>\theta(\Omega^\omega+\Omega)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\Omega_2)</math>
| |
| |-
| |
| |{X,X,1,1,2,1,...1,2}&n a.p X+1
| |
| |<math>\theta(\Omega^\omega+\Omega^2)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\Omega_2^2)</math>
| |
| |-
| |
| |{X,X,1,...1,3}&n 3 a.p X+1
| |
| |<math>\theta(\Omega^\omega2)</math>
| |
| |<math>\theta(\Omega_2^\Omega+\Omega_2^\omega))</math>
| |
| |-
| |
| |{X,X,1,...1,4}&n 4 a.p X+1
| |
| |<math>\theta(\Omega^\omega3)</math>
| |
| |<math>\theta(\Omega_2^\Omega2+\Omega_2^\omega))</math>
| |
| |-
| |
| |{X,X+1(1)2}&n={X,X,...X,X}&n a.p X+1
| |
| |<math>\theta(\Omega^\omega\omega)</math>
| |
| |<math>\theta(\Omega_2^\Omega\omega))</math>
| |
| |-
| |
| |{X,3,1,...1,2}&n 2 a.p X+2
| |
| |<math>\theta(\Omega^\omega\theta(\Omega^\omega\omega))</math>
| |
| |<math>\theta(\Omega_2^\Omega\theta_1(\Omega_2^\Omega\omega)))</math>
| |
| |-
| |
| |{X,X,1,...1,2}&n 2 a.p X+2
| |
| |<math>\theta(\Omega^{\omega+1})</math>
| |
| |<math>\theta(\Omega_2^{\Omega+1}))</math>
| |
| |-
| |
| |{X,X,1,...1,3}&n 3 a.p X+2
| |
| |<math>\theta(\Omega^{\omega+1}2)</math>
| |
| |<math>\theta(\Omega_2^{\Omega+1}2))</math>
| |
| |-
| |
| |{X,X+2(1)2}&n
| |
| |<math>\theta(\Omega^{\omega+1}\omega)</math>
| |
| |<math>\theta(\Omega_2^{\Omega+1}\omega))</math>
| |
| |-
| |
| |{X,X,1,...1,2}&n 2 a.p X+3
| |
| |<math>\theta(\Omega^{\omega+2})</math>
| |
| |<math>\theta(\Omega_2^{\Omega+2}))</math>
| |
| |-
| |
| |{X,X+3(1)2}&n
| |
| |<math>\theta(\Omega^{\omega+2}\omega)</math>
| |
| |<math>\theta(\Omega_2^{\Omega+2}\omega))</math>
| |
| |-
| |
| |{X,2X(1)2}&n
| |
| |<math>\theta(\Omega^{\omega2})</math>
| |
| |<math>\theta(\Omega_2^{\Omega+\omega}))</math>
| |
| |-
| |
| |{X,3X(1)2}&n
| |
| |<math>\theta(\Omega^{\omega3})</math>
| |
| |<math>\theta(\Omega_2^{\Omega2+\omega}))</math>
| |
| |-
| |
| |{X,X^2(1)2}&n
| |
| |<math>\theta(\Omega^{\omega^2})</math>
| |
| |<math>\theta(\Omega_2^{\Omega\omega}))</math>
| |
| |-
| |
| |{X,X^X(1)2}&n
| |
| |<math>\theta(\Omega^{\omega^\omega})</math>
| |
| |<math>\theta(\Omega_2^{\Omega^\omega}))</math>
| |
| |-
| |
| |{X,X^^X(1)2}&n
| |
| |<math>\theta(\Omega^{\varepsilon_0})</math>
| |
| |<math>\theta(\Omega_2^{\varepsilon_{\Omega+1}}))</math>
| |
| |-
| |
| |{X,3,2(1)2}&n
| |
| |<math>\theta(\Omega^{\theta(\Omega^\omega)})</math>
| |
| |<math>\theta(\Omega_2^{\theta_1(\Omega_2^\omega)}))</math>
| |
| |-
| |
| |{X,4,2(1)2}&n
| |
| |<math>\theta(\Omega^{\theta(\Omega^{\theta(\Omega^\omega)})})</math>
| |
| |<math>\theta(\Omega_2^{\theta_1(\Omega_2^{\theta_1(\Omega_2^\omega)})}))</math>
| |
| |-
| |
| |{X,X,2(1)2}&n
| |
| |<math>\theta(\Omega^\Omega)</math>
| |
| |<math>\theta(\Omega_2^{\Omega_2})</math>
| |
| |}
| |
| 现在可以看到,我们在这里得到的是 FGH 中的 LVO,而非军团结构。
| |
|
| |
|
| 在 Bowers 的页面中,他使用了类似“b&b&...b&b - p 次”的表达式,但 & 运算符有两个关键性质:序列性(sequence):& 字符串不会直接输出数值,而是将这种结构捕获到外部数组中。例如,{3&3(1)3&3} 实际等于 {3,3,3(1)3,3,3},而不是{tritri(1)tritri}=tritri。左保持性(holdleft):位于 & 左侧的内容在解决 & 之前无法被处理。例如,triakulus=3&3&3,但它不等于 tritri&3={3,tritri(1)2}={3,3,2(1)2}。第二个性质使得这类数组难以直接解析,因此需要引入符号辅助。设 X 表示普通数组中一行 n 的符号,X<sub>2</sub> 表示 X-数阵中一行 X 的符号,X<sub>k+1</sub> 表示 X<sub>k</sub>-数组中一行 X<sub>k</sub> 的符号。那么“b&b&...b&b - p 次”可表示为:<math>X_{p-1}\&X_{p-2}\&...X_2\&X\&b</math>。注意,& 字符串是分层构建的,而非线性的 X&X&...X&b!
| | 对于不同增长层级的追平关系,请参考[[增长层级#对照表|对照表]]。 |
| | |
| 例如,{X,n+1(1)2}&n 大约等于 {X,X(1)2}&(n+1),远小于 {X,X+1(1)2}&n。而 X<sub>2</sub>+1&X&n 则远超前者,因为它等价于 {X,X,...X(1)X}&n(第一行有X个X)。另外,在“{X,X,1,...1,2} 2 a.p X+2”中,位置 X+2 并非“X-数阵第二行的第二个元素”,而是 X-数阵第一行的第 X+2 个元素。需注意:X 仅表示普通数阵中一行 n 的符号,不代表包含 X 的 X-数阵中的一行;若要表示 X-数阵中的一行 X,应使用X<sub>2</sub>。用 Bowers 的原生符号和“清晰符号”对应:triakulus=3&3&3=X<sub>2</sub>&X&3,golapulus=110^100&10&10=X<sub>2</sub>^100&X&10,golapulusplex=10^100&10&10&10=X<sub>3</sub>^100&X<sub>2</sub>&X&10。
| |
| | |
| 现在是否更清晰了?
| |
| | |
| 好的。接下来继续比较其他结构。
| |