打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁初等嵌入”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
初等嵌入
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
'''初等嵌入'''(Elementary Embedding) 是模型论中的一个核心概念,用于描述两个结构之间的映射,该映射不仅保持结构的基本组成(如函数和关系),还严格保持所有一阶逻辑公式的真值。 === 定义 === 设 L 为一阶语言,M 和 N 是两个 L-结构(即[[模型]])。一个映射 <math>j:M\rightarrow N</math> 称为 从 M 到 N 的初等嵌入,当且仅当以下条件成立: # 单射性:j 是单射(对不同的 <math>a,b\in M</math>,有 <math>j(a)\neq j(b)</math>)。 # 初等性:对任意一阶公式 <math>\varphi(x_1,x_2,\cdots,x_n)</math> 及所有 <math>a_1,a_2,\cdots,a_n\in M</math>,有:<math>M\models\varphi[a_1,a_2,\cdots,a_n]\Rightarrow N\models\varphi[j(a_1),j(a_2),\cdots,j(a_n)]</math> 进一步,<math>j</math> 称为'''非平凡初等嵌入''',当且仅当存在 <math>x\in M</math> 使得 <math>j(x)\neq x</math>。 也可以要求 M 和 N 为[[传递集#传递类(Transitive Class)|传递类]],且满足 [[ZFC公理体系|ZF<sup>−</sup>]]。 === 临界点 === 对非平凡初等嵌入 <math>j:M\rightarrow N</math> 必存在唯一的最小序数 <math>\kappa</math> 使 <math>j(\kappa)\neq\kappa</math>。此序数 <math>\kappa</math> 称为 <math>j</math> 的'''临界点'''(Critical Point),记为 <math>\mathrm{crit}(j)=\kappa</math>。 === 共尾性 === 嵌入 <math>j:M\rightarrow N</math> 称为'''共尾的'''(Cofinality),当且仅当 <math>\forall y\in N\exists x\in M(y\in j(x))</math>。 若 <math>M</math> 满足 [[ZFC公理体系|ZF]],且 <math>N\subseteq M</math>,则任何初等嵌入 <math>j:M\rightarrow N</math> 必为共尾的。 === Kunen 定理 === 在 [[ZFC公理体系|ZFC]] 框架下,不存在非平凡初等嵌入 <math>j:V\rightarrow V</math>。 更具体地,Kunen 证明:对任意序数 <math>\lambda</math>,不存在非平凡初等嵌入 <math>j:V_{\lambda+2}\rightarrow V_{\lambda+2}</math> 使得 V 满足 ZFC。 [[分类:集合论相关]]
返回
初等嵌入
。
查看“︁初等嵌入”︁的源代码
来自Googology Wiki