打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

IBLP分析Part1

来自Googology Wiki
Baixie01000a7留言 | 贡献2026年2月20日 (五) 14:43的版本 (创建页面,内容为“{| class="wikitable" |Infinite Basic Laver Pattern |ω-Y Sequence |- |(1,0)1 |1 |- |(1,0)1(2,0)1 |1,1 |- |(1,0)1(2,0)1(3,0)1 |1,1,1 |- |(1,0)1(2,1)1 |1,2 |- |(1,0)1(2,1)1(3,0)1 |1,2,1 |- |(1,0)1(2,1)1(3,0)1(4,3)1 |1,2,1,2 |- |(1,0)1(2,1)1(3,1)1 |1,2,2 |- |(1,0)1(2,1)1(3,1)1(4,0)1(5,4)1(6,4)1 |1,2,2,1,2,2 |- |(1,0)1(2,1)1(3,1)1(4,1)1 |1,2,2,2 |- |(1,0)1(2,1)1(3,2)1 |1,2,3 |- |(1,0)1(2,1)1(3,2)1(4,1)1 |1,2,3,2 |- |(1,0)1(2,1)1(3,2)1(4,1)1(5,4)1 |1,2,3,2,3 |- |(1,…”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
Infinite Basic Laver Pattern ω-Y Sequence
(1,0)1 1
(1,0)1(2,0)1 1,1
(1,0)1(2,0)1(3,0)1 1,1,1
(1,0)1(2,1)1 1,2
(1,0)1(2,1)1(3,0)1 1,2,1
(1,0)1(2,1)1(3,0)1(4,3)1 1,2,1,2
(1,0)1(2,1)1(3,1)1 1,2,2
(1,0)1(2,1)1(3,1)1(4,0)1(5,4)1(6,4)1 1,2,2,1,2,2
(1,0)1(2,1)1(3,1)1(4,1)1 1,2,2,2
(1,0)1(2,1)1(3,2)1 1,2,3
(1,0)1(2,1)1(3,2)1(4,1)1 1,2,3,2
(1,0)1(2,1)1(3,2)1(4,1)1(5,4)1 1,2,3,2,3
(1,0)1(2,1)1(3,2)1(4,2)1 1,2,3,3
(1,0)1(2,1)1(3,2)1(4,3)1 1,2,3,4
(1,0)1(2,1)1(3,2)1(4,3)1(5,4)1 1,2,3,4,5
(1,0)1(2,1,0)1 1,2,4
(1,0)1(2,1,0)1(3,0)1 1,2,4,1
(1,0)1(2,1,0)1(3,0)1(4,3,0)1 1,2,4,1,2,4
(1,0)1(2,1,0)1(3,1)1 1,2,4,2
(1,0)1(2,1,0)1(3,1)1(4,3)1 1,2,4,2,3
(1,0)1(2,1,0)1(3,1)1(4,3)1(5,4)1 1,2,4,2,3,4
(1,0)1(2,1,0)1(3,1)1(4,3,1)1 1,2,4,2,4
(1,0)1(2,1,0)1(3,1)1(4,3,1)1(5,1)1(6,5,1)1 1,2,4,2,4,2,4
(1,0)1(2,1,0)1(3,1)1(4,3,1)1(5,3)1 1,2,4,3
(1,0)1(2,1,0)1(3,1)1(4,3,1)1(5,3)1(6,5)1 1,2,4,3,4
(1,0)1(2,1,0)1(3,1)1(4,3,1)1(5,3)1(6,5,1)1 1,2,4,3,5
(1,0)1(2,1,0)1(3,1,0)1 1,2,4,4
(1,0)1(2,1,0)1(3,1,0)1(4,1)1(5,4,1)1(6,4,1)1 1,2,4,4,2,4,4
(1,0)1(2,1,0)1(3,1,0)1(4,1,0)1 1,2,4,4,4
(1,0)1(2,1,0)1(3,2)1 1,2,4,5
(1,0)1(2,1,0)1(3,2)1(4,1)1(5,4,1)1 1,2,4,5,2,4
(1,0)1(2,1,0)1(3,2)1(4,1)1(5,4,1)1(6,5)1 1,2,4,5,2,4,5
(1,0)1(2,1,0)1(3,2)1(4,1,0)1 1,2,4,5,4
(1,0)1(2,1,0)1(3,2)1(4,1,0)1(5,1,0)1 1,2,4,5,4,4
(1,0)1(2,1,0)1(3,2)1(4,1,0)1(5,4)1 1,2,4,5,4,5
(1,0)1(2,1,0)1(3,2)1(4,2)1 1,2,4,5,5
(1,0)1(2,1,0)1(3,2)1(4,2)1(5,2)1 1,2,4,5,5,5
(1,0)1(2,1,0)1(3,2)1(4,3)1 1,2,4,5,6
(1,0)1(2,1,0)1(3,2)1(4,3)1(5,4)1 1,2,4,5,6,7
(1,0)1(2,1,0)1(3,2)1(4,3,2)1 1,2,4,5,7
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,1,0)1 1,2,4,5,7,4
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,1,0)1(6,5)1(7,6,5)1 1,2,4,5,7,4,5,7
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,2)1 1,2,4,5,7,5
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,2)1(6,5,2)1 1,2,4,5,7,5,7
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,3)1 1,2,4,5,7,6
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,3)1(6,5,3)1 1,2,4,5,7,6,8
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,3,2)1 1,2,4,5,7,7
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,4)1 1,2,4,5,7,8
(1,0)1(2,1,0)1(3,2)1(4,3,2)1(5,4)1(6,5,4)1 1,2,4,5,7,8,10
(1,0)1(2,1,0)1(3,2,1,0)2 1,2,4,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,0)1(5,4,0)1(6,5,4,0)2 1,2,4,6,1,2,4,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,1,0)1 1,2,4,6,4
(1,0)1(2,1,0)1(3,2,1,0)2(4,1,0)1(5,4)1 1,2,4,6,4,5
(1,0)1(2,1,0)1(3,2,1,0)2(4,1,0)1(5,4)1(6,5,4)1 1,2,4,6,4,5,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,1,0)1(5,4)1(6,5,4)1(7,6,5,4)2 1,2,4,6,4,5,7,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,1,0)1(5,4)1(6,5,4)1(7,6,5,4)2(8,5,4)1 1,2,4,6,4,5,7,9,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,1,0)1(5,4,1,0)2 1,2,4,6,4,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,2)1 1,2,4,6,5
(1,0)1(2,1,0)1(3,2,1,0)2(4,2)1(5,4,2)1(6,5,4,2)2 1,2,4,6,5,7,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,2,1,0)2 1,2,4,6,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,2,1,0)2(5,2,1,0)2 1,2,4,6,6,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,3)1 1,2,4,6,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3)1(5,4,3)1 1,2,4,6,7,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3)1(5,4,3)1(6,5,4,3)2 1,2,4,6,7,9,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3 1,2,4,6,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,1,0)1 1,2,4,6,8,4
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,1,0)1(6,5,1,0)2(7,6,5,1,0)3 1,2,4,6,8,4,6,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,2)1 1,2,4,6,8,5
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,2,1,0)2 1,2,4,6,8,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,3)1 1,2,4,6,8,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,3,2,1,0)3 1,2,4,6,8,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4)1 1,2,4,6,8,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4)1(6,5,4)1(7,6,5,4)2(8,7,6,5,4)3 1,2,4,6,8,9,11,13,15
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,2,1,0)3 1,2,4,6,8,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,2,1,0)3(6,5,2,1,0)3 1,2,4,6,8,10,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1 1,2,4,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,1,0)1 1,2,4,7,4
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,1,0)1(7,6,1,0)2(8,7,6,1,0)3(9,8,7)1 1,2,4,7,4,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,2)1 1,2,4,7,5
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,2,1,0)2 1,2,4,7,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1 1,2,4,7,6,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,3)1 1,2,4,7,6,9,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,3,2,1,0)3 1,2,4,7,6,9,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,3,2,1,0)3(7,6,3)1 1,2,4,7,6,9,8,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,4)1 1,2,4,7,6,9,8,11,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,4,2,1,0)3 1,2,4,7,6,9,8,11,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,4,2,1,0)3(7,6,4)1 1,2,4,7,6,9,8,11,10,13
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,4,2,1,0)3(7,6,4)1(8,6,2,1,0)3(9,8,6)1 1,2,4,7,6,9,8,11,10,13,12,15
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,4,3)1 1,2,4,7,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5)1 1,2,4,7,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5)1(7,6,5)1 1,2,4,7,8,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5)1(7,6,5)1(8,7,6,5)2(9,8,7,6,5)3(10,9,8)1 1,2,4,7,8,10,13
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3 1,2,4,7,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,2,1,0)3 1,2,4,7,9,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1 1,2,4,7,9,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1(8,4,3)1 1,2,4,7,9,12,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1(8,5,2,1,0)3(9,8,5)1 1,2,4,7,9,12,9,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1(8,6,2,1,0)3(9,8,6)1 1,2,4,7,9,12,11,14
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1(8,6,5)1 1,2,4,7,9,12,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1(8,7)1 1,2,4,7,9,12,13
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,2,1,0)3(7,6,5)1(8,7,2,1,0)3(9,8,7)1 1,2,4,7,9,12,14,17
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2 1,2,4,7,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,4,3)1(8,7,4,3)2 1,2,4,7,10,7,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,5,2,1,0)3 1,2,4,7,10,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,5,4,3)2 1,2,4,7,10,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6)1 1,2,4,7,10,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,2,1,0)3 1,2,4,7,10,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,2,1,0)3(8,7,6)1 1,2,4,7,10,12,15
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2 1,2,4,7,10,12,15,18
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3 1,2,4,7,10,13
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,5,4,3)3 1,2,4,7,10,13,16
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1 1,2,4,7,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,7,6)1 1,2,4,7,11,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,8)1 1,2,4,7,11,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,8,2,1,0)3 1,2,4,7,11,13
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,8,5,4,3)3 1,2,4,7,11,14
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,8,7,6)2 1,2,4,7,11,15
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3 1,2,4,7,11,15,19
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,4,3)1(6,5,4,3)2(7,6,5,4,3)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3(11,10,9)1 1,2,4,7,11,16
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3 1,2,4,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,1,0)1 1,2,4,8,4
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,1,0)1(7,6,1,0)2(8,7,6,1,0)3(9,8,7)1 1,2,4,8,4,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,1,0)1(7,6,1,0)2(8,7,6,1,0)3(9,*8,7,6,1,0)3 1,2,4,8,4,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2 1,2,4,8,6
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3 1,2,4,8,6,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1 1,2,4,8,6,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,10,9)1

1,2,4,8,6,9,13
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3

1,2,4,8,6,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,6,2,1,0)3

1,2,4,8,6,10,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,6,2,1,0)3(13,12,6)1(14,13,12,6)2(15,14,13,12,6)3(16,*15,14,13,12,6)3

1,2,4,8,6,10,8,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,7,2,1,0)3

1,2,4,8,6,10,8,12,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,7,6)1

1,2,4,8,7
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,7,6)1(13,12,7,6)2(14,13,12,7,6)3(15,*14,13,12,7,6)3

1,2,4,8,7,12
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,8,2,1,0)3

1,2,4,8,7,12,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,8,7,6)2

1,2,4,8,7,12,10
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,8,7,6)2(13,12,8,7,6)3(14,13,12)1

1,2,4,8,7,12,10,14
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,8,7,6)2(13,12,8,7,6)3(14,13,12)1(15,14,13,12)2(16,15,14,13,12)3(17,*16,15,14,13,12)3

1,2,4,8,7,12,10,15
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,7,6)1(9,8,7,6)2(10,9,8,7,6)3

(11,*10,9,8,7,6)3(12,8,7,6)2(13,12,8,7,6)3(14,13,12)1(15,14,13,12)2(16,15,14,13,12)3 (17,*16,15,14,13,12)3(18,13,12)1

1,2,4,8,7,12,11
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,*7,6,2,1,0)3 1,2,4,8,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,2,1,0)2(7,6,2,1,0)3(8,*7,6,2,1,0)3(9,2,1,0)2

(10,9,2,1,0)3(11,*10,9,2,1,0)3

1,2,4,8,8,8
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,3)1 1,2,4,8,9
(1,0)1(2,1,0)1(3,2,1,0)2(4,3,2,1,0)3(5,*4,3,2,1,0)3(6,3,2,1,0)3 1,2,4,8,10