打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

fffz分析Part9

来自Googology Wiki
Tabelog留言 | 贡献2025年8月30日 (六) 22:01的版本 (文字替换 -“BMS”替换为“BMS”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)

本条目展示fffz分析的第九部分。使用MOCFBMS对照

\begin{align}s\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,1)(1,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1+\Omega_\omega)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1+\lambda\alpha.(\alpha+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)\times2)=(0,0,0)(1,1,1)(2,2,1)(1,1,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1\times2)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1\times\omega)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1\times\Omega)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,1)(2,1,1)=\psi(1-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(2,1,1)(3,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)~~1-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_{\varepsilon_1}))=(0,0,0)(1,1,1)(2,2,1)(2,1,1)(3,2,0)(4,1,1)(5,2,0)=\psi((\lambda\alpha.(\alpha+2)-\Pi_0)~~1-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega\times3))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(2,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^2](\varepsilon_0+\omega^2)](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^2](\varepsilon_0+\omega^2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,0,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^\omega~~(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^2](\varepsilon_0+\omega^2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,1,0)=\psi(((\lambda\alpha.(\alpha+1)-\Pi_0)-)^\Omega~~(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega^2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)=\psi((\lambda\alpha.(\alpha+\omega)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega^3))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(3,2,0)=\psi((\lambda\alpha.(\alpha+\omega^2)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\varepsilon_0+\omega^\omega))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,0)=\psi((\lambda\alpha.(\alpha+\Omega)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\varepsilon_0+\omega^\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\varepsilon_0+\omega^\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)=\psi((\lambda\alpha.(\alpha\times2)-\Pi_0)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\omega^\omega](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)=\psi((\lambda\alpha.(\Omega_{\alpha+1})-\Pi_1)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)=\psi((\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)-(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)=\psi(((\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)-)^{2})\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,0,0)=\psi(((\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)-)^{\omega})\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,0)=\psi(((\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)-)^{\Omega})\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,0)(2,0,0)=\psi(((\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1)-)^{(1,0)})\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)=\psi(1-\lambda\alpha.(\Omega_{\alpha+2})-\Pi_2)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\zeta_0)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\eta_0)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\omega^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\omega^\omega](\omega^\omega)](\psi_Z[\omega^\omega](\omega^\omega))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\omega^\omega](\omega^\omega))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\omega^\omega](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(7,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\psi_{\Omega_{\alpha+1}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\omega^\omega](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\Omega_{\alpha+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0\times2}}))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,1,1)(6,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\Omega_{\alpha+1}^{\Omega_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\omega^\omega](\varepsilon_1))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,0)(5,2,0)(6,1,1)(7,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}+\psi_{\Omega_{\alpha+2}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,1,1)(4,2,1)(4,2,0)(5,2,0)(6,1,1)(7,2,1)(5,1,1)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times3)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\omega^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega^3))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\omega^3)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0+\omega)](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0+\omega)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0+\omega)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0+\omega))+\varepsilon_0^{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,0)(1,1,1)(2,1,1)(3,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times I_\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0+\omega))\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0+\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\varepsilon_0\times2)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}\times\Omega_{\alpha+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,1)(5,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times2)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,1)(5,2,1)(3,2,0)(4,1,1)(5,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega))\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega,\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)\times\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+2}^\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(4,1,1)(5,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}^{\Omega_{\alpha+2}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(5,1,1)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2}^{\Omega_{\alpha+2}^{\Omega_{\alpha+2}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0+\omega)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(5,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0](\varepsilon_0+\omega^2)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(5,2,0)(6,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\Omega_{\alpha+3}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\varepsilon_0+\omega^\omega))\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\psi_Z[\varepsilon_0,\varepsilon_0+\omega^\omega](\varepsilon_0+\omega^\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(5,2,0)(6,2,0)(7,1,0)(2,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\Omega_{\alpha+3}^\alpha))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega^\omega))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\Omega_{\alpha+3}^{\Omega_{\alpha+3}}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0+\omega^{\omega^\omega}))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,2,0)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\Omega_{\alpha+3}^{\Omega_{\alpha+3}^{\Omega_{\alpha+3}}}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times2)](\psi_Z[\varepsilon_0](\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\psi_{\Omega_{\alpha+4}}(0)))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times2)](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\Omega_{\alpha+\omega}))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times2)](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,1)(4,4,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\lambda\alpha'.(\alpha'+1)-\Pi_0))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times2)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,1)(4,4,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\lambda\alpha'.(\Omega_{\alpha'+2})-\Pi_0))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times2)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times2)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(2,2,0)(3,3,1)(4,4,1)(4,4,0)(5,5,1)(6,6,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+3}}(\lambda\alpha'.(\psi_{\Omega_{\alpha'+3}}(\lambda\alpha''.(\Omega_{\alpha''+2})-\Pi_0))-\Pi_0))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+3})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times3))=(0,0,0)(1,1,1)(2,2,1)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+4})-\Pi_1)\\&\large\color{red}{\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+\omega})-\Pi_0)=\rm SDO}\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha+\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+\Omega_\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\varepsilon_0^{\varepsilon_0})=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+I_\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\alpha+1)-\Pi_0})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\psi_Z[\omega^\omega](\omega^\omega))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\alpha\times2)-\Pi_0})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\psi_Z[\omega^\omega](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+1})-\Pi_1})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\psi_Z[\varepsilon_0](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)+\psi_Z[\varepsilon_0](\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+3})-\Pi_1})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times2+\psi_Z[\varepsilon_0](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1})-\Pi_1})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times3+\psi_Z[\varepsilon_0](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)(3,1,0)(1,1,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+\lambda\alpha.(\Omega_{\alpha+2})-\Pi_1})-\Pi_1})-\Pi_1})-\Pi_1)\\&\LARGE\color{purple}{\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times2})-\Pi_1)=\rm LDO}\end{align}

\begin{align}s\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times2})-\Pi_1)=\rm LDO\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,1,1)=\psi(1-\lambda\alpha.(\Omega_{\alpha\times2})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega+\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha\times2+1})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega+\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha\times2+2})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega+\varepsilon_0\times3))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha\times2+3})-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)(3,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times2+\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)(3,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times2+\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times2)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times2)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times3})-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times3)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega\times3)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times4})-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(3,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(3,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha\times\Omega})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^2)+\varepsilon_0^{\varepsilon_0^{\varepsilon_0}+\omega}+\varepsilon_0^{\varepsilon_0^3+\omega}+\varepsilon_0^{\varepsilon_0^2+\omega}+\varepsilon_0^{\varepsilon_0+\omega}+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,0)(1,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha\times K_{N_{M_{I_{\Omega_\omega}}}}})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^2)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^2)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha^2})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^3)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^3)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(3,1,0)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha^3})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^\omega))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha^\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^\omega))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha^\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha^{\alpha}})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^{\omega^\omega})\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega^{\omega^\omega})\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,1,0)(5,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha^{\alpha^{\alpha}}})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,0)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(0)})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\zeta_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(\Omega_{\alpha+1})})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(\Omega_{\alpha+\omega})})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z(\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(I_{\alpha+\omega})})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z(\varepsilon_0^{\varepsilon_0^2}))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(M_{\alpha+\omega})})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,2,1)(6,2,1)(7,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(K_{\alpha+\omega})})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,3,0)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'+1)-\Pi_0)})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,3,1)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\Omega_{\alpha'+2})-\Pi_0)})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,3,1)(6,2,0)(5,0,0)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\Omega_{\alpha'\times2})-\Pi_0)})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)))=(0,0,0)(1,1,1)(2,2,1)(3,1,0)(4,2,1)(5,3,1)(6,2,0)(7,3,0)=\psi(\lambda\alpha.(\Omega_{\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\Omega_{\psi_{\Omega_{\alpha'+1}}})-\Pi_0)})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,1,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,1,1)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\alpha+2}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times2)))=(0,0,0)(1,1,1)(2,2,1)(3,1,1)(4,2,1)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\alpha+2}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,1,1)(4,2,1)(5,1,1)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\Omega_{\alpha+2}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,1,1)(4,2,1)(5,1,1)(6,2,1)(7,1,1)(8,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\Omega_{\Omega_{\alpha+2}}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega)\times\varepsilon_1)=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)-(\lambda\alpha.(\psi_{I_{\alpha+1}}(0))-\Pi_0))\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+2}}(0)))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\Omega_{\psi_{I_{\alpha+1}}(0)+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,1)(5,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(I_{\psi_{I_{\alpha+1}}(0)+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,1)(5,3,1)(6,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(K_{\psi_{I_{\alpha+1}}(0)+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\alpha'+1)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,0)(5,4,0)(6,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\Omega_{\alpha'+1})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\Omega_{\alpha'+2})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,1)(5,3,1)(6,4,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\Omega_{\Omega_{\alpha'+2}})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,1)(5,3,1)(6,4,1)(7,3,1)(8,4,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\Omega_{\Omega_{\Omega_{\alpha'+2}}})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,1)(5,4,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\psi_{I_{\alpha'+1}}(0))-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,4,1)(5,4,0)(4,4,0)(5,5,1)(6,6,1)(7,6,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}(\lambda\alpha'.(\psi_{\Omega_{\psi_{I_{\alpha'+1}}(0)+1}}(\lambda\alpha''.(\psi_{I_{\alpha''+1}}(0))-\Pi_0))-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+2})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0\times3))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+3})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega\times2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,0,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega\times2)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega\times2)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\alpha})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,0)(4,2,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\psi_{\Omega_{\alpha+1}}(0)})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\Omega_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\Omega_{\alpha+2}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,1,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\Omega_{\Omega_{\alpha+1}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2))))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,1,1)(6,2,1)(7,1,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)+\Omega_{\Omega_{\Omega_{\alpha+1}}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)\times2})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)\times3})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)(3,0,0)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)\times\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)(3,1,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)\times\Omega_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)(3,1,1)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\psi_{I_{\alpha+1}}(0)\times\Omega_{\alpha+2}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)(3,1,1)(4,2,1)(5,2,0)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega\times2](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega+\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,1,1)(4,2,1)(5,2,0)(3,1,1)(4,2,1)(5,2,0)(4,2,1)(5,1,1)(6,2,1)(7,2,0)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\Omega_{\psi_{I_{\alpha+1}}(0)+1}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega\times3))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(2,2,1)(3,2,0)(2,2,1)(3,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(2))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega^2](\varepsilon_0\times\omega^2)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega^2](\varepsilon_0\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(3,0,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(\omega))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega^2](\varepsilon_0\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(3,1,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(\Omega))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{\alpha+1}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega^3))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{\alpha+1}^2))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega^{\omega}](\varepsilon_0\times\omega^{\omega})](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega^{\omega}](\varepsilon_0\times\omega^{\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,0,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{\alpha+1}^\omega))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega^{\omega}](\varepsilon_0\times\omega^{\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,1,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{\alpha+1}^\Omega))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega^{\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{\alpha+1}^{I_{\alpha+1}}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega^{\omega^{\omega}}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{\alpha+1}^{I_{\alpha+1}^{I_{\alpha+1}}}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z[\varepsilon_0](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,3,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(\psi_{\Omega_{I_{\alpha+1}+1}}(0)))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,3,1)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(\Omega_{I_{\alpha+1}+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z(\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,3,1)(5,3,1)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(I_{I_{\alpha+1}+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,3,1)(5,3,1)(6,3,1)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(K_{I_{\alpha+1}+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,3,1)(5,4,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(\lambda\alpha'.(\alpha'+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^2)](\psi_Z[\varepsilon_1](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,1)(3,2,0)(4,3,1)(5,4,1)(6,4,0)(7,5,1)(8,6,1)(9,6,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+1}}(\lambda\alpha'.(\psi_{I_{\alpha'+1}}(\lambda\alpha''.(\alpha''+1)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)=\psi(\lambda\alpha.(I_{\alpha+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^2+\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{I_{\alpha+1}+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^2+\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{I_{\alpha+1}+2})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times2)](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,1,1)(4,2,1)(5,2,1)=\psi(\lambda\alpha.(\Omega_{I_{\alpha+1}\times2})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times2)](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times3))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,1,1)(4,2,1)(5,2,1)(2,2,1)(3,1,1)(4,2,1)(5,2,1)=\psi(\lambda\alpha.(\Omega_{I_{\alpha+1}\times3})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times2)](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\psi_Z[\varepsilon_0](\varepsilon_0^2+\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,1,1)(4,2,1)(5,2,1)(4,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{I_{\alpha+1}+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times2)](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\psi_Z[\varepsilon_0](\varepsilon_0^2+\varepsilon_0)))))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,1,1)(4,2,1)(5,2,1)(4,2,1)(5,1,1)(6,2,1)(7,2,1)(6,2,1)=\psi(\lambda\alpha.(\Omega_{\Omega_{\Omega_{I_{\alpha+1}+1}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^2\times2](\varepsilon_0^2\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,2,0)=\psi(\lambda\alpha.(\psi_{I_{\alpha+2}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^2\times2))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,2,1)=\psi(\lambda\alpha.(I_{\alpha+2})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^2\times3))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(2,2,1)(3,2,1)(2,2,1)(3,2,1)=\psi(\lambda\alpha.(I_{\alpha+3})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\varepsilon_0^2\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\varepsilon_0^2\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,0,0)=\psi(\lambda\alpha.(I_{\alpha+\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\varepsilon_0^2\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,1,0)=\psi(\lambda\alpha.(I_{\alpha+\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\varepsilon_0^3))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,1,1)=\psi(\lambda\alpha.(I_{\Omega_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,1,1)(4,2,1)=\psi(\lambda\alpha.(I_{\Omega_{\alpha+2}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0^2)))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,1,1)(4,2,1)(5,2,1)=\psi(\lambda\alpha.(I_{I_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0^2\times\omega](\psi_Z[\varepsilon_0](\varepsilon_0^2))))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,1,1)(4,2,1)(5,2,1)(5,1,1)(6,2,1)(7,2,1)=\psi(\lambda\alpha.(I_{I_{I_{\alpha+1}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^2\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,2,0)=\psi(\lambda\alpha.(\psi_{I(1,\alpha+1)}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^3))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(I(1,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^4))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(I(2,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^\omega](\varepsilon_0^\omega)](\psi_Z[\varepsilon_0,\varepsilon_0^\omega](\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,0,0)=\psi(\lambda\alpha.(I(\omega,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^\omega](\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,1,0)=\psi(\lambda\alpha.(I(\Omega,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^\omega](\varepsilon_0^\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0^\omega](\varepsilon_0^\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(I(\alpha,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)=\psi(\lambda\alpha.(\psi_{I(1,0,\alpha+1)}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(1,0,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega+2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(I(1,1,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega+3}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(I(1,2,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega\times2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(4,2,0)=\psi(\lambda\alpha.(\psi_{I(2,0,\alpha+1)}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega\times2+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(2,0,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega\times2+2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(I(2,1,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega\times3+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(3,0,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega\times4+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(4,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^2}](\varepsilon_0^{\omega^2})](\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^2}](\varepsilon_0^{\omega^2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,0,0)=\psi(\lambda\alpha.(I(\omega,0,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^2}](\varepsilon_0^{\omega^2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,1,0)=\psi(\lambda\alpha.(I(\Omega,0,\alpha+1))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^2}](\varepsilon_0^{\omega^2})\times\omega](\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^2}](\varepsilon_0^{\omega^2})\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(I(\alpha,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega^2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,2,0)=\psi(\lambda\alpha.(\psi_{I(1,0,0,\alpha+1)}(0))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega^2+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(1,0,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega^2+2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,2,0)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(I(1,0,1,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega^2+\omega+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,2,0)(3,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(1,1,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega^3+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(4,2,0)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(I(1,0,0,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^\omega}](\varepsilon_0^{\omega^\omega})](\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^\omega}](\varepsilon_0^{\omega^\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(5,0,0)=\psi(\lambda\alpha.(I(1@\omega,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^{\omega^\omega}](\varepsilon_0^{\omega^\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(5,1,0)=\psi(\lambda\alpha.(I(1@\Omega,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\omega^\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(I(1@(1,0),\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0})](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(5,3,0)=\psi(\lambda\alpha.(\psi_{M_{\alpha+1}}(\psi_{\Omega_{M_{\alpha+1}}}(0)))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0})](\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,0)(5,3,1)(6,3,1)(7,3,1)=\psi(\lambda\alpha.(\psi_{M_{\alpha+1}}(M_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)=\psi(\lambda\alpha.(M_{\alpha+1})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(3,2,1)=\psi(\lambda\alpha.(M(1,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0+2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(3,2,1)(3,2,1)=\psi(\lambda\alpha.(M(2,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0+\omega+2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(3,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(M(1,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0+\omega^2+2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(3,2,1)(4,2,0)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(M(1,0,0,\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0\times2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(3,2,1)(4,2,1)=\psi(\lambda\alpha.(M(1;\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0\times3}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(3,2,1)(4,2,1)(3,2,1)(4,2,1)=\psi(\lambda\alpha.(M(2;\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0\times\omega+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(M(1,0;\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0\times\omega^2+1}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(4,2,0)(4,2,0)(3,2,1)=\psi(\lambda\alpha.(M(1,0,0;\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0\times\omega^\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(M(1@(1,0);\alpha+1))-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0^2}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(4,2,1)=\psi(\lambda\alpha.(N_{\alpha+\omega})-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0^3}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(4,2,1)(4,2,1)=\psi(\lambda\alpha.(1-2-2-2-2~\rm aft ~\alpha)-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_0^{\varepsilon_0^\omega}](\varepsilon_0^{\varepsilon_0^\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(5,1,0)=\psi(\lambda\alpha.((2-)^{\Omega}~\rm aft ~\alpha)-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0^\omega}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(5,2,0)=\psi(\lambda\alpha.((2-)^{\Omega}~\rm aft ~\alpha)-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(5,2,1)=\psi(\lambda\alpha.(K_{\alpha+\omega})-\Pi_2)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\uparrow\uparrow4))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(5,2,1)(6,2,1)=\psi(\lambda\alpha.(\kappa_{\alpha+\omega})-\Pi_3)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_0\uparrow\uparrow5))=(0,0,0)(1,1,1)(2,2,1)(3,2,1)(4,2,1)(5,2,1)(6,2,1)(7,2,1)=\psi(\lambda\alpha.(5~\rm aft~\alpha)-\Pi_4)\\&\LARGE\color{red}{\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)=\rm DSO}\end{align}

\begin{align}s\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)=\psi(2-\pi-(+1)-\Pi_0)=\rm DSO\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0)](\psi_Z[\varepsilon_0](\varepsilon_1)\times\psi_Z[\omega^\omega](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,0)(3,2,0)(4,1,1)=\psi((\lambda\alpha.(\Omega_{\alpha+1})-\Pi_0)-(\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0))\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0)](\psi_Z[\varepsilon_0](\varepsilon_1)\times\psi_Z[\varepsilon_0](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,0)(3,2,0)(4,1,1)(5,2,1)=\psi((\lambda\alpha.(\Omega_{\alpha+2})-\Pi_0)-(\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0))\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0)](\psi_Z[\varepsilon_0](\varepsilon_1)\times\psi_Z[\varepsilon_0](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(6,3,0)=\psi((\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)-(\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0))\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0)](\psi_Z[\varepsilon_0](\varepsilon_1)\times\psi_Z[\varepsilon_0](\varepsilon_1)\times\varepsilon_1)=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,0)(3,2,0)(4,1,1)(5,2,1)(6,3,0)(3,1,1)(4,2,0)=\psi((\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_0+1)-\Pi_0))\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\lambda\beta.(\beta+1)-\Pi_0+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0\times2))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\lambda\beta.(\beta+1)-\Pi_0+2})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0^2))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)(3,2,1)=\psi(\lambda\alpha.(I_{\lambda\beta.(\beta+1)-\Pi_0+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)(3,2,1)(4,2,1)=\psi(\lambda\alpha.(M_{\lambda\beta.(\beta+1)-\Pi_0+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1+\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)(3,2,1)(4,2,1)(5,2,1)=\psi(\lambda\alpha.(K_{\lambda\beta.(\beta+1)-\Pi_0+1})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1\times2))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)(3,3,0)=\psi(\lambda\alpha.(2\rm nd.\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1\times3))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(2,2,1)(3,3,0)(2,2,1)(3,3,0)=\psi(\lambda\alpha.(3\rm rd.\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_1\times\omega](\varepsilon_1\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_1\times\omega](\varepsilon_1\times\omega))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(3,0,0)=\psi(\lambda\alpha.(1-\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1\times\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(3,2,1)=\psi(\lambda\alpha.(2~1-\lambda\beta.(\beta+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_2))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(3,3,0)=\psi(\lambda\alpha.((\lambda\beta.(\beta+1)-\Pi_0)-(\lambda\beta.(\beta+1)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_3))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(3,3,0)(3,3,0)=\psi(\lambda\alpha.((\lambda\beta.(\beta+1)-\Pi_0)-(\lambda\beta.(\beta+1)-\Pi_0)-(\lambda\beta.(\beta+1)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\varepsilon_\omega](\varepsilon_\omega))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,1,0)=\psi(\lambda\alpha.(((\lambda\beta.(\beta+1)-\Pi_0)-)^\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\varepsilon_\omega](\varepsilon_\omega)\times\omega](\psi_Z[\varepsilon_0,\varepsilon_\omega](\varepsilon_\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(((\lambda\beta.(\beta+1)-\Pi_0)-)^\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_\omega))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,2,0)=\psi(\lambda\alpha.(\psi_{\lambda\beta.(\beta+1)-\Pi_1}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,2,1)=\psi(\lambda\alpha.(\lambda\beta.(\beta+1)-\Pi_1)-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_{\varepsilon_1}))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,2,1)(5,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+2)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_{\varepsilon_{\varepsilon_1}}))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,2,1)(5,3,0)(6,2,1)(7,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+3)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\zeta_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+\omega)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\eta_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(4,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+\omega^2)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\psi[\omega^\omega](\omega^\omega)](\psi[\omega^\omega](\omega^\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,1,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta+\Omega)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\omega^\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta\times2)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\omega^{\omega\times2})))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(4,3,0)(5,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta^2)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\omega^{\omega^2})))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(5,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta^{\beta})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\omega^{\omega^\omega})))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(6,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\beta^{\beta^{\beta}})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0))](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(6,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+1}}(0))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0))](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(6,3,1)(7,4,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+1}}(\lambda\alpha'.(\alpha'+1)-\Pi_0))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0))](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(6,3,1)(7,4,1)(8,5,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+1}}(\lambda\alpha'.(\lambda\beta'.(\beta'+1)-\Pi_0))-\Pi_0))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0))](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0))](\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\varepsilon_1))))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,0)(6,3,1)(7,4,1)(8,5,0)(9,5,0)(10,4,0)(11,5,1)(12,6,1)(13,7,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+1}}(\lambda\alpha'.(\lambda\beta'.(\psi_{\Omega_{\beta'+1}}(\lambda\alpha''.(\lambda\beta''.(\beta''+1)-\Pi_0))-\Pi_0))-\Pi_0))-\Pi_0))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,1)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+1})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\omega^{\omega^{\varepsilon_0+1}})))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,1)(5,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+1}^\beta)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\omega^{\omega^{\varepsilon_0\times2}})))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,1)(5,2,1)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+1}^{\Omega_{\beta+1}})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi[\omega^\omega](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,3,0)(5,2,1)(6,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+2}}(0))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0))](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,4,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+2}}(\psi_{\Omega_{\beta+3}}(0)))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0))](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,1)(3,3,0)(4,4,1)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{\Omega_{\beta+2}}({\Omega_{\beta+\omega}}))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+2})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0\times2)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(3,3,1)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+3})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,0,0)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+\omega})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))\times\omega](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta+\alpha})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\beta\times2})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0^2)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,2,1)=\psi(\lambda\alpha.(\lambda\beta.(\Omega_{\Omega_{\beta+1}})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0\times\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\psi_{I_{\beta+1}}(0))-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0^2)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,3,1)=\psi(\lambda\alpha.(\lambda\beta.(I_{\beta+1})-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0})))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,3,1)(5,3,1)=\psi(\lambda\alpha.(\lambda\beta.(M_{\beta+1})-\Pi_0)-\Pi_0)\\&\large\color{red}{\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\gamma+1)-\Pi_0)-\Pi_0)-\Pi_0)=\psi(3-\pi-(+1)-\Pi_0)=\rm TSO}\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_{\varepsilon_1})))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,3,1)(6,4,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\gamma+2)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\zeta_0)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,4,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\gamma+\omega)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega)=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,4,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\gamma+\alpha)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega))\times\psi_Z[\omega^\omega](\omega^\omega))](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega))\times\psi_Z[\omega^\omega](\omega^\omega)))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,4,0)(6,2,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\gamma+\beta)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\omega^\omega))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,4,0)(6,3,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\gamma\times2)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\omega^\omega](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,4,1)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\Omega_{\gamma+1})-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0)))](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,0)(5,5,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\psi_{\Omega_{\gamma+2}}(\psi_{\Omega_{\gamma+3}}(0)))-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\Omega_{\gamma+2})-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0\times2))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(4,4,1)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\Omega_{\gamma+3})-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)))](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))](\psi_Z[\varepsilon_0,\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega)](\psi_Z[\varepsilon_0,\varepsilon_0\times\omega](\varepsilon_0\times\omega))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(5,0,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\Omega_{\gamma+\omega})-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0^{\varepsilon_0}))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(5,4,1)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(M_{\gamma+1})-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_1))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(5,5,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\lambda\delta.(\delta+1)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)=\psi(4-\pi-(+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_1)))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(5,5,1)(6,6,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\lambda\delta.(\lambda\varepsilon.(\varepsilon+1)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)=\psi(5-\pi-(+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_1))))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(5,5,1)(6,6,1)(7,7,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\lambda\delta.(\lambda\varepsilon.(\lambda\zeta.(\zeta+1)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)=\psi(6-\pi-(+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_1)))))))=(0,0,0)(1,1,1)(2,2,1)(3,3,1)(4,4,1)(5,5,1)(6,6,1)(7,7,1)(8,8,0)=\psi(\lambda\alpha.(\lambda\beta.(\lambda\gamma.(\lambda\delta.(\lambda\varepsilon.(\lambda\zeta.(\lambda\eta.(\eta+1)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)-\Pi_0)=\psi(7-\pi-(+1)-\Pi_0)\\&\LARGE\color{\purple}{\psi_Z[\varepsilon_1](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,2)=\psi(\omega-\pi-\Pi_0)=\psi(\psi_\alpha(\alpha_\omega))=\rm p.f.e.c~LRO}\end{align}