打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

BMS分析

来自Googology Wiki

目前使用的OCF为M型,后续补充BOCF

1:单行BMS(PrSS)

=0

(0)=1

(0)(0)=2

(0)(0)(0)=3

(0)(1)=(0)(0)(0)(0)(0)...=ω

(0)(1)(0)=ω+1

(0)(1)(0)(0)=ω+2

(0)(1)(0)(1)=ω×2

(0)(1)(0)(1)(0)(1)=ω×3

(0)(1)(1)=(0)(1)(0)(1)(0)(1)...=ω2

(0)(1)(1)(0)=ω2+1

(0)(1)(1)(0)(1)=ω2+ω

(0)(1)(1)(0)(1)(0)(1)=ω2+ω×2

(0)(1)(1)(0)(1)(1)=ω2×2

(0)(1)(1)(0)(1)(1)(0)(1)=ω2×2+ω

(0)(1)(1)(0)(1)(1)(0)(1)(1)=ω2×3

(0)(1)(1)(1)=ω3

(0)(1)(1)(1)(1)=ω4

(0)(1)(2)=(0)(1)(1)(1)(1)...=ωω

(0)(1)(2)(0)(1)(2)=ωω×2

(0)(1)(2)(1)=ωω+1

(0)(1)(2)(1)(1)=ωω+2

(0)(1)(2)(1)(1)(1)=ωω+3

(0)(1)(2)(1)(2)=ωω×2

(0)(1)(2)(1)(2)(1)(2)=ωω×3

(0)(1)(2)(2)=ωω2

(0)(1)(2)(2)(1)=ωω2+1

(0)(1)(2)(2)(1)(2)=ωω2+ω

(0)(1)(2)(2)(1)(2)(2)=ωω2×2

(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)=ωω2×3

(0)(1)(2)(2)(2)=ωω3

(0)(1)(2)(2)(2)(2)=ωω4

(0)(1)(2)(3)=(0)(1)(2)(2)(2)(2)...=ωωω

(0)(1)(2)(3)(4)=ωωωω

(0)(1)(2)(3)(4)(5)=ωωωωω

(0)(1,1)=(0)(1)(2)(3)(4)(5)(6)...=ε0

2:双行BMS

(0)(1,1)=ε0

(0)(1,1)(0)=ε0+1

(0)(1,1)(0)(1)=ε0+ω

(0)(1,1)(0)(1,1)=ε0×2

(0)(1,1)(0)(1,1)(0)(1,1)=ε0×3

(0)(1,1)(1)=ε0×ω

(0)(1,1)(1)(1)=ε0×ω2

(0)(1,1)(1)(2)=ε0×ωω

(0)(1,1)(1)(2)(3)=ε0×ωωω

(0)(1,1)(1)(2,1)=ε02

(0)(1,1)(1)(2,1)(1)(2)=ε02×ω

(0)(1,1)(1)(2,1)(1)(2)(3)=ε02×ωω

(0)(1,1)(1)(2,1)(1)(2,1)=ε03

(0)(1,1)(1)(2,1)(1)(2,1)(1)(2,1)=ε04

(0)(1,1)(1)(2,1)(2)=ε0ω

(0)(1,1)(1)(2,1)(2)(1)(2,1)=ε0ω+1

(0)(1,1)(1)(2,1)(2)(1)(2,1)(1)(2,1)=ε0ω+2

(0)(1,1)(1)(2,1)(2)(1)(2,1)(2)=ε0ω×2

(0)(1,1)(1)(2,1)(2)(1)(2,1)(2)(1)(2,1)(2)=ε0ω×3

(0)(1,1)(1)(2,1)(2)(2)=ε0ω2

(0)(1,1)(1)(2,1)(2)(3)=ε0ωω

(0)(1,1)(1)(2,1)(2)(3)(4)=ε0ωωω

(0)(1,1)(1)(2,1)(2)(3,1)=ε0ε0

(0)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)=ε0ε0ε0

(0)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)(4)(5,1)=ε0ε0ε0ε0

(0)(1,1)(1,1)=ε1

(0)(1,1)(1,1)(0)(1,1)(1,1)=ε1×2

(0)(1,1)(1,1)(1)=ε1×ω

(0)(1,1)(1,1)(1)(2,1)=ε1×ε0

(0)(1,1)(1,1)(1)(2,1)(2)(3,1)=ε1×ε02

(0)(1,1)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)=ε1×ε0ε0

(0)(1,1)(1,1)(1)(2,1)(2,1)=ε12

(0)(1,1)(1,1)(1)(2,1)(2,1)(2)=ε1ω

(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)=ε1ε0

(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)=ε1ε1

(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)(3)(4,1)(4,1)=ε1ε1ε1

(0)(1,1)(1,1)(1,1)=ε2

(0)(1,1)(1,1)(1,1)(1,1)=ε3

(0)(1,1)(2)=εω

(0)(1,1)(2)(1)=εω×ω

(0)(1,1)(2)(1)(2,1)=εω×ε0

(0)(1,1)(2)(1)(2,1)(2,1)=εω×ε1

(0)(1,1)(2)(1)(2,1)(2,1)(2,1)=εω×ε2

(0)(1,1)(2)(1)(2,1)(2,1)(2,1)(2,1)=εω×ε3

(0)(1,1)(2)(1)(2,1)(3)=εω2

(0)(1,1)(2)(1)(2,1)(3)(2)(3,1)(4)=εωεω

(0)(1,1)(2)(1,1)=εω+1

(0)(1,1)(2)(1,1)(1,1)=εω+2

(0)(1,1)(2)(1,1)(1,1)(1,1)=εω+3

(0)(1,1)(2)(1,1)(2)=εω×2

(0)(1,1)(2)(1,1)(2)(1,1)(2)=εω×3

(0)(1,1)(2)(2)=εω2

(0)(1,1)(2)(2)(2)=εω3

(0)(1,1)(2)(3)=εωω

(0)(1,1)(2)(3)(4)=εωωω

(0)(1,1)(2)(3,1)=εε0

(0)(1,1)(2)(3,1)(1,1)=εε0+1

(0)(1,1)(2)(3,1)(3,1)=εε1

(0)(1,1)(2)(3,1)(4)=εεω

(0)(1,1)(2)(3,1)(4)(5,1)=εεε0

(0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)=εεεε0

(0)(1,1)(2,1)=ζ0

(0)(1,1)(2,1)(1)(2,1)(3,1)=ζ02

(0)(1,1)(2,1)(1)(2,1)(3,1)(2)(3,1)(4,1)=ζ0ζ0

(0)(1,1)(2,1)(1,1)=εζ0+1

(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1)(2,1)=εζ0+12

(0)(1,1)(2,1)(1,1)(1,1)=εζ0+2

(0)(1,1)(2,1)(1,1)(2)=εζ0+ω

(0)(1,1)(2,1)(1,1)(2)(3,1)=εζ0+ε0

(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)=εζ0×2

(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)=εεζ0+1

(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4)(5,1)(6,1)(5,1)=εεεζ+1

(0)(1,1)(2,1)(1,1)(2,1)=ζ1

(0)(1,1)(2,1)(1,1)(2,1)(1,1)=εζ1+1

(0)(1,1)(2,1)(1,1)(2)=εζ1+ω

(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=ζ2

(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=ζ3

(0)(1,1)(2,1)(2)=ζω

(0)(1,1)(2,1)(2)(2)=ζω2

(0)(1,1)(2,1)(2)(3,1)=ζε0

(0)(1,1)(2,1)(2)(3,1)(4,1)=ζζ0

(0)(1,1)(2,1)(2)(3,1)(4,1)(4)(5,1)(6,1)=ζζζ0

(0)(1,1)(2,1)(2,1)=η0

(0)(1,1)(2,1)(2,1)(1,1)=εη0+1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)=ζη0+1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2)(3,1)(4,1)(4,1)(3,1)(4,1)=ζζη0+1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=η1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=η2

(0)(1,1)(2,1)(2,1)(2)=ηω

(0)(1,1)(2,1)(2,1)(2,1)=φ(4,0)=ψ(Ω3)

(0)(1,1)(2,1)(3)=φ(ω,0)=ψ(Ωω)

(0)(1,1)(2,1)(3)(1,1)=φ(1,φ(ω,0)+1)=ψ(Ωω+1)

(0)(1,1)(2,1)(3)(1,1)(2,1)=φ(2,φ(ω,0)+1)=ψ(Ωω+Ω)

(0)(1,1)(2,1)(3)(1,1)(2,1)(2,1)=φ(3,φ(ω,0)+1)=ψ(Ωω+Ω2)

(0)(1,1)(2,1)(3)(1,1)(2,1)(3)=φ(ω,1)=ψ(Ωω×2)

(0)(1,1)(2,1)(3)(1,1)(2,1)(3)(1,1)(2,1)(3)=φ(ω,2)=ψ(Ωω×3)

(0)(1,1)(2,1)(3)(2)=φ(ω,ω)=ψ(Ωω×ω)

(0)(1,1)(2,1)(3)(2,1)=φ(ω+1,0)=ψ(Ωω+1)

(0)(1,1)(2,1)(3)(2,1)(2,1)=φ(ω+2,0)=ψ(Ωω+2)

(0)(1,1)(2,1)(3)(2,1)(2,1)(2,1)=φ(ω+3,0)=ψ(Ωω+3)

(0)(1,1)(2,1)(3)(2,1)(3)=φ(ω×2,0)=ψ(Ωω×2)

(0)(1,1)(2,1)(3)(2,1)(3)(2,1)(3)=φ(ω×3,0)=ψ(Ωω×3)

(0)(1,1)(2,1)(3)(3)=φ(ω2,0)=ψ(Ωω2)

(0)(1,1)(2,1)(3)(4,1)=φ(φ(1,0),0)=ψ(Ωψ(0))

(0)(1,1)(2,1)(3)(4,1)(5,1)=φ(φ(2,0),0)=ψ(Ωψ(Ω))

(0)(1,1)(2,1)(3)(4,1)(5,1)(6)=φ(φ(ω,0),0)=ψ(Ωψ(Ωω))

(0)(1,1)(2,1)(3)(4,1)(5,1)(6)(7,1)(8,1)(9)=φ(φ(φ(ω,0),0),0)=ψ(Ωψ(Ωψ(Ωω)))

(0)(1,1)(2,1)(3,1)=φ(1,0,0)=Γ0=ψ(ΩΩ)

(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=φ(1,0,1)=Γ1=ψ(ΩΩ×2)

(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=φ(1,0,2)=Γ2=ψ(ΩΩ×3)

(0)(1,1)(2,1)(3,1)(2)=φ(1,0,ω)=Γω=ψ(ΩΩ×ω)

(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)=φ(1,0,φ(1,0,0))=ΓΓ0=ψ(ΩΩ×ψ(ΩΩ))

(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)(4)(5,1)(6,1)(7,1)=φ(1,0,φ(1,0,φ(1,0,0)))=ΓΓΓ0=ψ(ΩΩ×ψ(ΩΩ×ψ(ΩΩ)))

(0)(1,1)(2,1)(3,1)(2,1)=φ(1,1,0)=ψ(ΩΩ+1)

(0)(1,1)(2,1)(3,1)(2,1)(2,1)=φ(1,2,0)=ψ(ΩΩ+2)

(0)(1,1)(2,1)(3,1)(2,1)(3)=φ(1,ω,0)=ψ(ΩΩ+ω)

(0)(1,1)(2,1)(3,1)(2,1)(3)(4,1)(5,1)(6,1)(5,1)(6)=φ(1,φ(1,ω,0),0)=ψ(ΩΩ+ψ(ΩΩ+ω))

(0)(1,1)(2,1)(3,1)(2,1)(3,1)=ψ(2,0,0)=ψ(ΩΩ×2)

(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=ψ(3,0,0)=ψ(ΩΩ×3)

(0)(1,1)(2,1)(3,1)(3)=φ(ω,0,0)=ψ(ΩΩ×ω)

(0)(1,1)(2,1)(3,1)(3,1)=φ(1,0,0,0)=ψ(ΩΩ2)

(0)(1,1)(2,1)(3,1)(3,1)(3,1)=φ(1,0,0,0,0)=ψ(ΩΩ3)

(0)(1,1)(2,1)(3,1)(4)=ψ(ΩΩω)

(0)(1,1)(2,1)(3,1)(4)(5,1)=ψ(ΩΩψ(0))

(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)=ψ(ΩΩψ(Ω))

(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)=ψ(ΩΩψ(ΩΩ))

(0)(1,1)(2,1)(3,1)(4,1)=ψ(ΩΩΩ)

(0)(1,1)(2,1)(3,1)(4,1)(5,1)=ψ(ΩΩΩΩ)

(0)(1,1)(2,2)=ψ(ψ1(0))