传递闭包
来自Googology Wiki
更多操作
定理(传递闭包唯一存在)
对任意集合 ,存在唯一集合 ,满足如下条件
- 是传递集;
- ;
- 如果传递集 满足 ,则 。
证明
使用自然数集上的归纳法,定义集合列 满足:
- ;
- 。
这里的 是广义并,定义为 。这个集合的存在性由并集公理保证。
令 ,这里又用到了广义并。
下面证明,这样构造出的 满足定理要求。
对任意的 和 ,设 ,则 ,即 ,所以 。所以 是传递集。
显然 。
设传递集 满足 ,即 。我们证明:对任意 ,若 ,则 。
假设 。对任意的 和 ,有 。因为 是传递集,所以 。这说明 。又因为 ,所以 。
因为 ,且若 则 ,所以对任意 都有 。所以 。
这就证明了定理中的存在性。下面证明唯一性。
若 都满足以上三个条件,那么根据第三个条件,有 且 ,即 。所以满足以上三个条件的集合唯一。
证毕。
我们把满足这三个条件的集合 叫做 的传递闭包,记作 。