打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
BMS分析Part2:BO~EBO
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
Z
(
留言
|
贡献
)
2025年8月20日 (三) 08:45的版本
(
差异
)
←上一版本
|
最后版本
(
差异
) |
下一版本→
(
差异
)
本条目展示
BMS
强度分析的第二部分
BMS
MOCF
(
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
ψ
(
Ω
ω
+
1
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
0
,
0
)
ψ
(
Ω
ω
+
ω
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
1
,
0
)
ψ
(
Ω
ω
+
Ω
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
2
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
1
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
ψ
1
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
0
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
)
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
1
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
)
ω
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
+
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
+
ψ
1
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
×
2
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
×
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
2
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
2
Ω
2
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
ψ
2
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
0
)
(
4
,
4
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
ψ
3
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
ω
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
ω
+
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
ω
+
ψ
1
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
(
5
,
3
,
0
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
ω
+
ψ
1
(
ψ
2
(
0
)
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
ψ
(
Ω
ω
+
ψ
1
(
Ω
ω
+
ψ
1
(
Ω
ω
)
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
+
Ω
2
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
3
,
0
)
ψ
(
Ω
ω
+
ψ
2
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
3
,
3
,
0
)
(
4
,
3
,
0
)
ψ
(
Ω
ω
+
Ω
3
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
3
,
3
,
0
)
(
4
,
4
,
0
)
ψ
(
Ω
ω
+
ψ
3
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
0
,
0
)
ψ
(
Ω
ω
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
ψ
(
Ω
ω
×
Ω
)
BMS
MOCF
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
ψ
(
Ω
ω
×
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
ψ
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
Ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
ψ
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
Ω
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
Ω
+
ψ
1
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
(
5
,
1
,
0
)
ψ
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
Ω
)
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
0
)
ψ
(
Ω
ω
×
Ω
+
ψ
2
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
4
,
1
,
0
)
(
3
,
3
,
0
)
(
4
,
3
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
3
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
+
ψ
1
(
Ω
ω
×
Ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
+
ψ
1
(
Ω
ω
×
Ω
+
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
0
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
+
ψ
1
(
Ω
ω
×
Ω
+
Ω
ω
)
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
+
ψ
1
(
Ω
ω
×
Ω
+
Ω
ω
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
+
Ω
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
×
Ω
+
Ω
ω
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
ψ
(
Ω
ω
×
Ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
×
Ω
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
×
ψ
1
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
ψ
(
Ω
ω
×
ψ
1
(
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
(
5
,
1
,
0
)
ψ
(
Ω
ω
×
ψ
1
(
Ω
ω
×
Ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
(
5
,
1
,
0
)
(
4
,
2
,
1
)
ψ
(
Ω
ω
×
ψ
1
(
Ω
ω
×
Ω
+
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
(
5
,
1
,
0
)
(
4
,
2
,
1
)
(
5
,
1
,
0
)
ψ
(
Ω
ω
×
ψ
1
(
Ω
ω
×
Ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
4
,
2
,
1
)
(
5
,
1
,
0
)
(
6
,
2
,
1
)
ψ
(
Ω
ω
×
ψ
1
(
Ω
ω
×
ψ
1
(
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
×
Ω
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
4
,
2
,
0
)
(
5
,
3
,
0
)
ψ
(
Ω
ω
×
ψ
2
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
4
,
3
,
0
)
ψ
(
Ω
ω
×
Ω
3
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
ψ
(
Ω
ω
2
+
1
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
2
+
ψ
1
(
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
ψ
(
Ω
ω
2
+
ψ
1
(
Ω
ω
×
Ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
1
,
0
)
ψ
(
Ω
ω
2
+
ψ
1
(
Ω
ω
×
Ω
+
ψ
1
(
Ω
ω
×
Ω
)
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
4
,
1
,
0
)
ψ
(
Ω
ω
2
+
ψ
1
(
Ω
ω
×
Ω
+
Ω
2
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
2
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
0
,
0
)
ψ
(
Ω
ω
2
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
ψ
(
Ω
ω
2
×
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
2
×
Ω
+
ψ
1
(
Ω
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
1
,
0
)
(
3
,
1
,
0
)
(
2
,
2
,
1
)
ψ
(
Ω
ω
2
×
Ω
+
Ω
ω
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
2
×
Ω
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
2
,
0
)
(
3
,
2
,
0
)
(
2
,
2
,
0
)
(
3
,
3
,
1
)
(
4
,
3
,
0
)
(
4
,
3
,
0
)
ψ
(
Ω
ω
2
×
Ω
3
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
3
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
2
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
4
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
0
,
0
)
ψ
(
Ω
ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
1
,
0
)
ψ
(
Ω
ω
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
1
,
0
)
(
4
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
Ω
ω
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
ψ
(
ψ
ω
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
1
,
1
,
1
)
ψ
(
ψ
ω
(
0
)
+
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
ψ
(
ψ
ω
(
0
)
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
2
,
0
,
0
)
ψ
(
ψ
ω
(
0
)
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
2
,
1
,
0
)
ψ
(
ψ
ω
(
0
)
×
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
ψ
(
ψ
ω
(
0
)
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
3
,
0
,
0
)
ψ
(
ψ
ω
(
0
)
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
3
,
1
,
0
)
ψ
(
ψ
ω
(
0
)
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
ψ
(
ψ
ω
(
0
)
ψ
ω
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
3
,
1
,
0
)
(
4
,
2
,
0
)
(
4
,
1
,
0
)
(
5
,
2
,
0
)
ψ
(
ψ
ω
(
0
)
ψ
ω
(
0
)
ψ
ω
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
ψ
ω
(
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
3
,
2
,
0
)
(
3
,
2
,
0
)
ψ
(
ψ
ω
(
2
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
0
,
0
)
ψ
(
ψ
ω
(
ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
1
,
0
)
ψ
(
ψ
ω
(
Ω
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
1
,
0
)
(
5
,
2
,
0
)
ψ
(
ψ
ω
(
ψ
ω
(
0
)
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
1
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
1
+
ψ
ω
(
Ω
ω
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
1
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
4
,
0
,
0
)
ψ
(
Ω
ω
+
1
×
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
4
,
1
,
0
)
ψ
(
Ω
ω
+
1
×
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
+
1
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
5
,
0
,
0
)
ψ
(
Ω
ω
+
1
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
5
,
1
,
0
)
ψ
(
Ω
ω
+
1
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
(
5
,
2
,
0
)
ψ
(
Ω
ω
+
1
Ω
ω
+
1
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
3
,
0
)
ψ
(
ψ
ω
+
1
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
3
,
0
)
(
5
,
3
,
0
)
ψ
(
Ω
ω
+
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
0
)
(
4
,
3
,
0
)
(
5
,
4
,
0
)
ψ
(
ψ
ω
+
2
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
ψ
(
Ω
ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
×
2
+
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
ψ
(
Ω
ω
×
2
+
ψ
ω
(
Ω
ω
×
2
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
ψ
(
Ω
ω
×
2
+
ψ
ω
(
Ω
ω
×
2
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
(
4
,
1
,
0
)
(
5
,
2
,
1
)
ψ
(
Ω
ω
×
2
+
ψ
ω
(
Ω
ω
×
2
+
ψ
ω
(
Ω
ω
×
2
)
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
×
2
+
Ω
ω
+
1
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
ψ
(
Ω
ω
×
2
+
ψ
ω
+
1
(
Ω
ω
×
2
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
(
4
,
3
,
0
)
ψ
(
Ω
ω
×
2
+
ψ
ω
+
1
(
Ω
ω
×
2
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
(
4
,
3
,
0
)
(
5
,
2
,
0
)
ψ
(
Ω
ω
×
2
+
ψ
ω
+
1
(
Ω
ω
×
2
+
Ω
ω
+
1
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
(
4
,
3
,
0
)
(
5
,
2
,
0
)
ψ
(
Ω
ω
×
2
+
Ω
ω
+
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
3
,
2
,
1
)
ψ
(
Ω
ω
×
2
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
1
,
0
)
ψ
(
Ω
ω
×
2
×
Ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
1
,
0
)
(
1
,
1
,
1
)
ψ
(
Ω
ω
×
2
×
Ω
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
1
,
0
)
(
5
,
2
,
0
)
ψ
(
Ω
ω
×
2
×
ψ
ω
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
1
,
0
)
(
5
,
2
,
1
)
ψ
(
Ω
ω
×
2
×
ψ
ω
(
Ω
ω
×
2
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
ψ
(
Ω
ω
×
2
×
Ω
ω
+
1
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
ψ
(
Ω
ω
×
2
×
Ω
ω
+
1
+
ψ
ω
+
1
(
Ω
ω
×
2
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
(
5
,
2
,
0
)
(
4
,
3
,
1
)
ψ
(
Ω
ω
×
2
×
Ω
ω
+
1
+
Ω
ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
3
,
2
,
0
)
(
4
,
3
,
1
)
(
5
,
3
,
0
)
ψ
(
Ω
ω
×
2
×
Ω
ω
+
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
3
,
2
,
1
)
ψ
(
Ω
ω
×
2
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
4
,
2
,
0
)
(
3
,
2
,
1
)
ψ
(
Ω
ω
×
2
3
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
5
,
0
,
0
)
ψ
(
Ω
ω
×
2
ω
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
5
,
2
,
0
)
ψ
(
Ω
ω
×
2
Ω
ω
+
1
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
5
,
2
,
0
)
(
3
,
2
,
1
)
ψ
(
Ω
ω
×
2
Ω
ω
×
2
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
5
,
3
,
0
)
ψ
(
ψ
ω
×
2
(
0
)
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
0
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
(
5
,
3
,
1
)
ψ
(
Ω
ω
×
3
)
(
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
ψ
(
Ω
ω
2
)
BMS分析Part2:BO~EBO
来自Googology Wiki