增长层级:修订间差异
更多操作
小 →对照表 |
无编辑摘要 |
||
第59行: | 第59行: | ||
<nowiki>\( \begin{array} { c | c | c } \rm FGH & \rm MGH & \rm HH & \rm SGH & \rm EXP & -\\ \hline & & H_0 & g_\omega & x\\ f_0 & m_0 & H_1 & g_{\omega +1} & x+1\\ f_0(f_0) & m_1 & H_2 & g_{\omega +2} & x+2\\ f_0^4 & m_2 & H_4 & g_{\omega +4} & x+4\\ f_0^8 & m_3 & H_8 & g_{\omega +8} & x+8\\ f_1 & \matrix{\underset{x+2^x}{\color{red}{ m_\omega}}} & H_\omega & g_{\omega \times 2} & 2x \\ f_1(f_0) & {\color{red}{ m_\omega}} & H_{\omega +1} & g_{\omega \times 2 +2} & 2x +2\\ f_1(f_0(f_0)) & {\color{red} {m_\omega}} & H_{\omega +2} & g_{\omega \times 2 +4} & 2x +4\\ f_1(f_1) & {\color{red} {m_\omega}} & H_{\omega \times 2} & g_{\omega \times 4} & 4x\\ f_1(f_1(f_0)) & {\color{red} {m_\omega}} & H_{\omega \times 2 +1} & g_{\omega \times 4 +4} & 4x +4\\ f_1(f_1(f_1)) & {\color{red} {m_\omega}} & H_{\omega \times 3} & g_{\omega \times 8} & 8x\\ f_2 & {\color{green} {m_\omega}} & H_{\omega ^2} & {\color{green}{ g_{\omega^2}\sim g_{\omega^n}}} & x\cdot 2^x\\ f_2(f_1) & {\color{green}{ m_\omega}} & H_{\omega ^2 +\omega} & {\color{green} {g_{\omega^2}\sim g_{\omega^n}}} & x\cdot 2^{2x+1}\\ f_2(f_2) & {\color{green} {m_{\omega +1}}} & H_{\omega ^2 \times 2} & {\color{green} {g_{\omega^\omega}\sim g_{\omega^{\omega^n}}}} & x\cdot 2^{x\cdot (2^x+1)}\\ f_3 & \matrix{\underset{>x\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 2}}}} & H_{\omega ^3} & \matrix{\underset{x\uparrow\uparrow x}{\color{green} {g_{\varepsilon_0}} }} & >x\uparrow\uparrow x \\ f_3(f_1) & {\color{red} {m_{\omega \times 2}}} & H_{\omega ^3 +\omega} & \matrix{\underset{>x\uparrow\uparrow 2x-1}{\color{green}{ g_{\varepsilon_1} }}} & >x\uparrow\uparrow 2x \\ f_3(f_2) & {\color{green} {m_{\omega \times 2}}} & H_{\omega ^3 +\omega ^2} & {\color{green} {g_{\varepsilon_\omega} \sim g_{\varepsilon_{\omega^n} }}} & >x\uparrow\uparrow (x\cdot 2^x) \\ f_3(f_3) & \matrix{\underset{>x\uparrow\uparrow x\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 2 +1}}}} & H_{\omega ^3 \times 2} & {\color{green} {g_{\varepsilon_{\varepsilon_0}} }} & >x\uparrow\uparrow x\uparrow\uparrow x &{\rm tritri}=3\uparrow\uparrow\uparrow3\\ f_3(f_3(f_2)) & {\color{green} {m_{\omega \times 2 +1}}} & H_{\omega ^3 \times 2 +\omega^2} & {\color{green} {g_{\varepsilon_{\varepsilon_\omega }}\sim g_{\varepsilon_{\varepsilon_{\omega^n} }} }} & >x\uparrow\uparrow x\uparrow\uparrow (x\cdot 2^x) \\ f_3(f_3(f_3)) & \matrix{\underset{>x\uparrow\uparrow\uparrow 5}{\color{red} {m_{\omega \times 2 +2}}}} & H_{\omega ^3 \times 3} & {\color{green}{ g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}} } & >x\uparrow\uparrow\uparrow 4 \\ f_4 & \matrix{\underset{>x\uparrow\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 3}}}} & H_{\omega ^4} & {\color{green} {g_{\zeta_0}} } & >x\uparrow\uparrow\uparrow (x+1)\\ f_4(f_0) & {\color{red} {m_{\omega \times 3}}} & H_{\omega ^4+1} & {\color{green} {g_{\varepsilon_{\zeta_0+1}} }} & >x\uparrow\uparrow\uparrow (x+2) \\ f_4(f_1) & {\color{red} {m_{\omega \times 3}}} & H_{\omega ^4+\omega } & {\color{green}{ g_{\zeta_1}} } & >x\uparrow\uparrow\uparrow 2x \\ f_4(f_2) & {\color{green} {m_{\omega \times 3}}} & H_{\omega ^4+\omega^2 } & {\color{green} {g_{\zeta_\omega }\sim g_{\zeta_{\omega^n} } }} & >x\uparrow\uparrow\uparrow (x\cdot 2^x) \\ f_4(f_3) & {\color{green}{ m_{\omega \times 3}}} & H_{\omega ^4+\omega^3 } & {\color{green} {g_{\zeta_{\varepsilon _0}} } } & >x\uparrow\uparrow\uparrow x\uparrow\uparrow x \\ f_4(f_4) & {\color{red} {m_{\omega \times 3+1}}} & H_{\omega ^4\times 2 } & {\color{green}{ g_{\zeta_{\zeta _0} } }} & >x\uparrow\uparrow\uparrow x\uparrow\uparrow\uparrow x \\ f_5 & {\color{red} {m_{\omega \times 4}}} & H_{\omega ^5 } & {\color{green} {g_{\eta _0} } } & >x\uparrow\uparrow\uparrow\uparrow x & G(1)=3\uparrow^4 3\\ f_5(f_4) & {\color{green} {m_{\omega \times 4}}} & H_{\omega ^5 } & {\color{green} {g_{\eta_{\zeta _0}} } } & >x\uparrow^4 x\uparrow^3 x\\ f_5(f_5) & {\color{red}{ m_{\omega \times 4+1}}} & H_{\omega ^5\times 2 } & {\color{green} {g_{\eta_{\eta _0}}} } & >x\uparrow^4 x\uparrow^4 x\\ f_6 & {\color{red}{ m_{\omega \times 5}}} & H_{\omega ^6 } & {\color{green} {g_{\varphi(4,0) }} } & >x\uparrow^5 x\\ f_7 & {\color{red} {m_{\omega \times 6}}} & H_{\omega ^7 } & {\color{green} {g_{\varphi(5,0) }} } & >x\uparrow^6 x\\ \matrix{\underset{n>2,n\in \mathbb{N} }{f_n}} & {\color{red} {m_{\omega \times (n-1)}}} & H_{\omega ^n } & {\color{green}{ g_{\varphi(n-2,0) }} } & >x\uparrow^{n-1} x\\ f_\omega & \matrix{\underset{>x\uparrow^x x}{\color{red}{ m_{\omega^2}}}} & H_{\omega ^\omega } & \matrix{\underset{>x\uparrow^x x}{\color{red} {g_{\varphi(\omega ,0) }}} } & >x\uparrow^{x-1} x\\ \end{array} \)</nowiki> | <nowiki>\( \begin{array} { c | c | c } \rm FGH & \rm MGH & \rm HH & \rm SGH & \rm EXP & -\\ \hline & & H_0 & g_\omega & x\\ f_0 & m_0 & H_1 & g_{\omega +1} & x+1\\ f_0(f_0) & m_1 & H_2 & g_{\omega +2} & x+2\\ f_0^4 & m_2 & H_4 & g_{\omega +4} & x+4\\ f_0^8 & m_3 & H_8 & g_{\omega +8} & x+8\\ f_1 & \matrix{\underset{x+2^x}{\color{red}{ m_\omega}}} & H_\omega & g_{\omega \times 2} & 2x \\ f_1(f_0) & {\color{red}{ m_\omega}} & H_{\omega +1} & g_{\omega \times 2 +2} & 2x +2\\ f_1(f_0(f_0)) & {\color{red} {m_\omega}} & H_{\omega +2} & g_{\omega \times 2 +4} & 2x +4\\ f_1(f_1) & {\color{red} {m_\omega}} & H_{\omega \times 2} & g_{\omega \times 4} & 4x\\ f_1(f_1(f_0)) & {\color{red} {m_\omega}} & H_{\omega \times 2 +1} & g_{\omega \times 4 +4} & 4x +4\\ f_1(f_1(f_1)) & {\color{red} {m_\omega}} & H_{\omega \times 3} & g_{\omega \times 8} & 8x\\ f_2 & {\color{green} {m_\omega}} & H_{\omega ^2} & {\color{green}{ g_{\omega^2}\sim g_{\omega^n}}} & x\cdot 2^x\\ f_2(f_1) & {\color{green}{ m_\omega}} & H_{\omega ^2 +\omega} & {\color{green} {g_{\omega^2}\sim g_{\omega^n}}} & x\cdot 2^{2x+1}\\ f_2(f_2) & {\color{green} {m_{\omega +1}}} & H_{\omega ^2 \times 2} & {\color{green} {g_{\omega^\omega}\sim g_{\omega^{\omega^n}}}} & x\cdot 2^{x\cdot (2^x+1)}\\ f_3 & \matrix{\underset{>x\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 2}}}} & H_{\omega ^3} & \matrix{\underset{x\uparrow\uparrow x}{\color{green} {g_{\varepsilon_0}} }} & >x\uparrow\uparrow x \\ f_3(f_1) & {\color{red} {m_{\omega \times 2}}} & H_{\omega ^3 +\omega} & \matrix{\underset{>x\uparrow\uparrow 2x-1}{\color{green}{ g_{\varepsilon_1} }}} & >x\uparrow\uparrow 2x \\ f_3(f_2) & {\color{green} {m_{\omega \times 2}}} & H_{\omega ^3 +\omega ^2} & {\color{green} {g_{\varepsilon_\omega} \sim g_{\varepsilon_{\omega^n} }}} & >x\uparrow\uparrow (x\cdot 2^x) \\ f_3(f_3) & \matrix{\underset{>x\uparrow\uparrow x\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 2 +1}}}} & H_{\omega ^3 \times 2} & {\color{green} {g_{\varepsilon_{\varepsilon_0}} }} & >x\uparrow\uparrow x\uparrow\uparrow x &{\rm tritri}=3\uparrow\uparrow\uparrow3\\ f_3(f_3(f_2)) & {\color{green} {m_{\omega \times 2 +1}}} & H_{\omega ^3 \times 2 +\omega^2} & {\color{green} {g_{\varepsilon_{\varepsilon_\omega }}\sim g_{\varepsilon_{\varepsilon_{\omega^n} }} }} & >x\uparrow\uparrow x\uparrow\uparrow (x\cdot 2^x) \\ f_3(f_3(f_3)) & \matrix{\underset{>x\uparrow\uparrow\uparrow 5}{\color{red} {m_{\omega \times 2 +2}}}} & H_{\omega ^3 \times 3} & {\color{green}{ g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}} } & >x\uparrow\uparrow\uparrow 4 \\ f_4 & \matrix{\underset{>x\uparrow\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 3}}}} & H_{\omega ^4} & {\color{green} {g_{\zeta_0}} } & >x\uparrow\uparrow\uparrow (x+1)\\ f_4(f_0) & {\color{red} {m_{\omega \times 3}}} & H_{\omega ^4+1} & {\color{green} {g_{\varepsilon_{\zeta_0+1}} }} & >x\uparrow\uparrow\uparrow (x+2) \\ f_4(f_1) & {\color{red} {m_{\omega \times 3}}} & H_{\omega ^4+\omega } & {\color{green}{ g_{\zeta_1}} } & >x\uparrow\uparrow\uparrow 2x \\ f_4(f_2) & {\color{green} {m_{\omega \times 3}}} & H_{\omega ^4+\omega^2 } & {\color{green} {g_{\zeta_\omega }\sim g_{\zeta_{\omega^n} } }} & >x\uparrow\uparrow\uparrow (x\cdot 2^x) \\ f_4(f_3) & {\color{green}{ m_{\omega \times 3}}} & H_{\omega ^4+\omega^3 } & {\color{green} {g_{\zeta_{\varepsilon _0}} } } & >x\uparrow\uparrow\uparrow x\uparrow\uparrow x \\ f_4(f_4) & {\color{red} {m_{\omega \times 3+1}}} & H_{\omega ^4\times 2 } & {\color{green}{ g_{\zeta_{\zeta _0} } }} & >x\uparrow\uparrow\uparrow x\uparrow\uparrow\uparrow x \\ f_5 & {\color{red} {m_{\omega \times 4}}} & H_{\omega ^5 } & {\color{green} {g_{\eta _0} } } & >x\uparrow\uparrow\uparrow\uparrow x & G(1)=3\uparrow^4 3\\ f_5(f_4) & {\color{green} {m_{\omega \times 4}}} & H_{\omega ^5 } & {\color{green} {g_{\eta_{\zeta _0}} } } & >x\uparrow^4 x\uparrow^3 x\\ f_5(f_5) & {\color{red}{ m_{\omega \times 4+1}}} & H_{\omega ^5\times 2 } & {\color{green} {g_{\eta_{\eta _0}}} } & >x\uparrow^4 x\uparrow^4 x\\ f_6 & {\color{red}{ m_{\omega \times 5}}} & H_{\omega ^6 } & {\color{green} {g_{\varphi(4,0) }} } & >x\uparrow^5 x\\ f_7 & {\color{red} {m_{\omega \times 6}}} & H_{\omega ^7 } & {\color{green} {g_{\varphi(5,0) }} } & >x\uparrow^6 x\\ \matrix{\underset{n>2,n\in \mathbb{N} }{f_n}} & {\color{red} {m_{\omega \times (n-1)}}} & H_{\omega ^n } & {\color{green}{ g_{\varphi(n-2,0) }} } & >x\uparrow^{n-1} x\\ f_\omega & \matrix{\underset{>x\uparrow^x x}{\color{red}{ m_{\omega^2}}}} & H_{\omega ^\omega } & \matrix{\underset{>x\uparrow^x x}{\color{red} {g_{\varphi(\omega ,0) }}} } & >x\uparrow^{x-1} x\\ \end{array} \)</nowiki> | ||
得益于基本列,SGH终于红了一次。但他的<math>\varphi</math>要开始猛进了。 | |||
\( \begin{array} { c | c | c } \rm FGH1 &\rm FGH2 & \rm MGH & \rm HH & \rm SGH & \rm EXP & -\\ \hline f_x &f_\omega & {\color{red}{ m_{\omega^2}}} & H_{\omega ^\omega } & {\color{red} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x-1} x\\ f_x(f_x)&f_x(f_\omega) & {\color{red}{ m_{\omega^2}}} & H_{\omega ^\omega } & {\color{red} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x-1} x\uparrow^{x-1} x\\ f_{x+1}(x+1)&f_\omega(f_0) & {\color{red}{ m_{\omega^2}}} & H_{\omega ^\omega +1 } & {\color{red} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x} x\\ f_{x+2}(x+2)&f_\omega(f_0(f_0)) & {\color{green}{ m_{\omega^2}}} & H_{\omega ^\omega +2 } & {\color{green} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x+1} x\\ f_{x+2}(f_{x+2})& & {\color{green}{ m_{\omega^2}}} & {\color{green}{H_{\omega ^\omega +2 }}} & {\color{green} {g_{\varphi(\omega ,\varphi(\omega ,0)) }} } & >x\uparrow^{x+1} x\uparrow^{x+1} x\\ f_{x+3}(x+3)&f_\omega(f_0^3) & {\color{green}{ m_{\omega^2}}} & H_{\omega ^\omega +3 } & {\color{green} {g_{\varphi(\omega+1 ,0) }} } & >x\uparrow^{x+2} x\\ f_{2x}(2x) &f_\omega(f_1) & \matrix{\underset{>x\uparrow^{x\uparrow^{x} x} x}{\color{red}{ m_{\omega^2+1}}}} & H_{\omega ^\omega +\omega } & {\color{red} {g_{\varphi(\omega \times 2 ,0) }} } & >x\uparrow^{2x-1} x\\ f_{2x+2}(2x+2)&f_\omega(f_1(f_0)) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega +1 } & {\color{green} {g_{\varphi(\omega \times 2 ,0) }} } & >x\uparrow^{2x +1} x\\ f_{2x+4}(2x+4)&f_\omega(f_1(f_0(f_0))) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega +2 } & {\color{green} {g_{\varphi(\omega \times 2 +2,0) }} } & >x\uparrow^{2x +3} x\\ f_{4x}(4x)&f_\omega(f_1(f_1)) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega\times 2 } & {\color{red} {g_{\varphi(\omega \times 4 ,0) }} } & >x\uparrow^{4x -1} x\\ f_{f_2}(f_2)&f_\omega(f_2) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega^2 } & {\color{green} {g_{\varphi(\omega ^2 ,0) }\sim g_{\varphi(\omega ^n ,0) }} } & >x\uparrow^{2^x} x\\ f_{f_3}(f_3)&f_\omega(f_3) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega^3 } & {\color{green} {g_{\varphi(\varepsilon _0 ,0) }} } & >x\uparrow^{x\uparrow\uparrow x} x\\ f_{f_4}(f_4)&f_\omega(f_4) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega^4 } & {\color{green} {g_{\varphi(\zeta _0 ,0) }} } & >x\uparrow^{x\uparrow\uparrow\uparrow x} x\\ f_{f_x}(f_x)&f_\omega(f_\omega ) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega \times 2 } & {\color{red} {g_{\varphi(\varphi(\omega ,0) ,0) }} } & >x\uparrow^{x\uparrow^{x-1} x} x & G(2)\\ f_<nowiki>{{f_{f_x}(f_x)}}</nowiki>(f_{f_x}(f_x)) &f_\omega(f_\omega(f_\omega ) ) & {\color{green}{ m_{\omega^2+1}}} & H_{\omega ^\omega \times 3 } & {\color{red} {g_{\varphi(\varphi(\varphi(\omega ,0) ,0) ,0) }} } & >x\uparrow^{x\uparrow^{x\uparrow^{x-1} x} x} x& G(3)\\ &f_{\omega+1} & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} } & {\color{green} {g_{\varphi(1,0,0) }} } & >x\to x\to x\to 2 & \color{red}{G(x)}\\ \end{array} \) | |||
对于<math>f_{\omega +1}</math>后的增长率,建议直接使用FGH分析。 | |||
<nowiki>\( \begin{array} { c | c | c } \rm FGH1 &\rm FGH2 & \rm MGH & \rm HH & \rm SGH & -\\ \hline &f_{\omega+1} & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} } & {\color{green} {g_{\varphi(1,0,0) }=g_{\psi (\Omega ^\Omega ) }} } & \color{red}{G(x)}\\ f_{x+2}(f_{\omega+1})& & {\color{red}{ m_{\omega^2+\omega }}} & {\color{green} {H_{\omega ^{\omega+1}}} } & {\color{green} {g_{\varphi(\omega ,\varphi(1,0,0)+1) }} } & \color{red}{G(x)}\\ f_{f_{x+2}}(f_{\omega+1})& & {\color{red}{ m_{\omega^2+\omega }}} & {\color{green} {H_{\omega ^{\omega+1}}} } & {\color{green} {g_{\varphi(\varphi(\omega ,0) ,\varphi(1,0,0)+1) }} } & \color{red}{G(x)}\\ f_{\omega }(f_{\omega+1})=f_{\omega }^{x+1}(x+1)&f_{\omega+1}(f_0) & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +1} & {\color{green} {g_{\varphi(\varphi(1,0,0),1) }} }& \color{green}{G(x)}\\ f_{\omega }^{x+2}(x+2)&f_{\omega+1}(f_0(f_0)) & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +2} & {\color{green} {g_{\varphi(\varphi(\varphi(1,0,0),1),1) }} }& \color{green}{G(x+1)}\\ f_{\omega }^{2x}(2x)&f_{\omega+1}(f_1) & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +\omega} & {\color{green} {g_{\varphi(1,0,1) }=g_{\psi (\Omega ^\Omega \times 2) }} }& \color{green}{G(2x-1)}\\ f_{\omega }^{x\cdot 2^x}(x\cdot 2^x)&f_{\omega+1}(f_2) & {\color{green}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +\omega^2} & {\color{green} {g_{\varphi(1,0,\omega^2 )\sim \varphi(1,0,\omega^n )}} }& \\ f_{\omega }^{f_{\omega }}(f_{\omega })&f_{\omega+1}(f_\omega ) & {\color{green}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +\omega^\omega} & {\color{green} {g_{\varphi(1,0,\varphi(\omega ,0)) }} }& \\ f_{\omega }^{f_{\omega+1 }}(f_{\omega +1})&f_{\omega+1}(f_{\omega +1}) & {\color{red}{ m_{\omega^2+\omega +1 }}} & H_{\omega ^{\omega+1} \times 2} & {\color{green} {g_{\varphi(1,0,\varphi(1,0 ,0)) }} }& \color{green}{G(G(x-1))}\\ &f_{\omega+1}^3 & {\color{green}{ m_{\omega^2+\omega +1 }}} & H_{\omega ^{\omega+1} \times 3} & {\color{green} {g_{\varphi(1,0,\varphi(1,0 ,\varphi(1,0 ,0))) }} }& \color{green}{G(G(G(x-1)))}\\ &f_{\omega+2} & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & H_{\omega ^{\omega+2} } & {\color{green} {g_{\varphi(1,1,0) }=g_{\psi (\Omega ^{\Omega+1} ) }} }&\\ f_{\omega}(f_{\omega+2})& & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & {\color{green}{H_{\omega ^{\omega+2} }}} & {\color{green} {g_{\varphi(\varphi(1,1,0),1) }} }&\\ f_{\omega +1}(f_{\omega+2})=f_{\omega+1 }^{x+1}(x+1)&f_{\omega+2}(f_0) & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & {H_{\omega ^{\omega+2}+1 }} & {\color{green} {g_{\varphi(1,0,\varphi(1,1,0)+1) }} }&\\ f_{\omega+1}^{2x}(2x)&f_{\omega+2}(f_1) & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & H_{\omega ^{\omega+2}+\omega } & {\color{green} {g_{\varphi(1,1,1) }} }&\\ f_{\omega }^{f_{\omega+2 }}(f_{\omega +2})&f_{\omega+2}(f_{\omega +2}) & {\color{red}{ m_{\omega^2+\omega\times 2 +1 }}} & H_{\omega ^{\omega+2} \times 2} & {\color{green} {g_{\varphi(1,1,\varphi(1,1 ,0)) }} }& \\ &f_{\omega+3} & {\color{red}{ m_{\omega^2+\omega \times 3 }}} & H_{\omega ^{\omega+3} } & {\color{green} {g_{\varphi(1,2,0) }=g_{\psi (\Omega ^{\Omega+2} ) } }}&\\ &f_{\omega+4} & {\color{red}{ m_{\omega^2+\omega \times 4 }}} & H_{\omega ^{\omega+4} } & {\color{green} {g_{\varphi(1,3,0) }} }&\\ &f_{\omega\times 2} & {\color{red}{ m_{\omega^2\times 2 }}} & H_{\omega ^{\omega\times 2} } & {\color{red} {g_{\varphi(1,\omega ,0) }=g_{\psi (\Omega ^{\Omega+\omega })} } }&\\ \end{array} \)</nowiki> | |||
<nowiki>\( \begin{array} { c | c | c } \rm FGH & \rm HH & \rm SGH \\ \hline f_{\omega^\omega} & H_{\omega ^{\omega^\omega }} & {\color{green} {g_{\varphi(1@\omega)}}}={\color{red} {g_{\psi (\Omega ^{\Omega^\omega})}}}\\ f_{\omega^\omega}(f_0) & H_{\omega ^{\omega^\omega }+1} & {\color{green} {g_{\varphi(1@(\omega+1))}}}\\ f_{\omega^\omega}(f_1) & H_{\omega ^{\omega^\omega }+\omega } & {\color{green} {g_{\varphi(1@(\omega\times 2))}}}\\ f_{\omega^\omega}(f_{\omega^\omega}) & H_{\omega ^{\omega^\omega }\times 2 } & {\color{green} {g_{\varphi(1@\varphi(1@\omega))}}}\\ f_{\omega^\omega+1} & H_{\omega ^{\omega^\omega +1}} & {\color{green} {g_{\varphi(1@(1,0))}= {g_{\psi (\Omega ^{\Omega^\Omega})}}}}\\ f_{\omega^\omega+\omega } & H_{\omega ^{\omega^\omega +\omega }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\omega })}}}\\ f_{\omega^\omega+\omega +1 } & H_{\omega ^{\omega^\omega +\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega })}}}\\ f_{\omega^\omega+\omega\times 2 +1 } & H_{\omega ^{\omega^\omega +\omega\times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times 2 })}}}\\ f_{\omega^\omega+\omega^2 } & H_{\omega ^{\omega^\omega +\omega^ 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times \omega })}}}\\ f_{\omega^\omega+\omega^2 +1 } & H_{\omega ^{\omega^\omega +\omega^ 2 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^2 })}}}\\ f_{\omega^\omega+\omega^3 +1 } & H_{\omega ^{\omega^\omega +\omega^ 3 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^3 })}}}\\ f_{\omega^\omega\times 2 } & H_{\omega ^{\omega^\omega \times 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^\omega })}}}\\ f_{\omega^\omega\times 2 +1} & H_{\omega ^{\omega^\omega \times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 2 })}}}\\ f_{\omega^\omega\times 3 +1} & H_{\omega ^{\omega^\omega \times 3 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 3})}}}\\ f_{\omega^{\omega+1}} & H_{\omega ^{\omega^{\omega +1}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega\times \omega })}}}\\ f_{\omega^{\omega+1}+1} & H_{\omega ^{\omega^{\omega +1}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1} })}}}\\ f_{\omega^{\omega+1}+\omega +1} & H_{\omega ^{\omega^{\omega +1}+\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}+\Omega })}}}\\ f_{\omega^{\omega+1}\times 2+1} & H_{\omega ^{\omega^{\omega +1} \times 2} } & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times 2 })}}}\\ f_{\omega^{\omega+2}} & H_{\omega ^{\omega^{\omega +2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times \omega })}}}\\ f_{\omega^{\omega+2}+1} & H_{\omega ^{\omega^{\omega +2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+2} })}}}\\ f_{\omega^{\omega+3}+1} & H_{\omega ^{\omega^{\omega +3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+3} })}}}\\ f_{\omega^{\omega\times 2}} & H_{\omega ^{\omega^{\omega \times 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+\omega } })}}}\\ f_{\omega^{\omega\times 2}+1} & H_{\omega ^{\omega^{\omega \times 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 2 } })}}}\\ f_{\omega^{\omega\times 3}+1} & H_{\omega ^{\omega^{\omega \times 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 3 } })}}}\\ f_{\omega^{\omega^ 2}} & H_{\omega ^{\omega^{\omega ^ 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega\times \omega } })}}}\\ f_{\omega^{\omega^ 2}+1} & H_{\omega ^{\omega^{\omega ^ 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^2 } })}}}\\ f_{\omega^{\omega^ 3}+1} & H_{\omega ^{\omega^{\omega ^ 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^3 } })}}}\\ f_{\omega^{\omega^ \omega }} & H_{\omega ^{\omega^{\omega ^ \omega }}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega^\omega } })}}}\\ f_{\omega^{\omega^ \omega }+1} & H_{\omega ^{\omega^{\omega ^ \omega }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^\Omega } })}}}\\ f_{\omega^{\omega^{\omega^ \omega } }+1} & H_{\omega ^{\omega^{\omega ^{\omega^ \omega } }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^{\Omega^ \Omega } } })}}}\\ f_{\psi (0)=\varepsilon_0} & {\color{green}{H_{\varepsilon _0}}}/H_{\varepsilon _0+1} & {\color{green} {g_{\psi (\psi_1(0))}}}\\ \end{array} \)</nowiki> | |||
同样是由于基本列,MGH与FGH在<math>\omega^\omega</math>处Catching但略小于FGH(注意Catching并不是相等),此后每遇到<math>\omega^\omega</math>的倍数二者都会Catching一次。 | |||
<nowiki>\( \begin{array} { c | c | c } \rm FGH & \rm HH & \rm SGH \\ \hline f_{\omega^\omega} & H_{\omega ^{\omega^\omega }} & {\color{green} {g_{\varphi(1@\omega)}}}={\color{red} {g_{\psi (\Omega ^{\Omega^\omega})}}}\\ f_{\omega^\omega}(f_0) & H_{\omega ^{\omega^\omega }+1} & {\color{green} {g_{\varphi(1@(\omega+1))}}}\\ f_{\omega^\omega}(f_1) & H_{\omega ^{\omega^\omega }+\omega } & {\color{green} {g_{\varphi(1@(\omega\times 2))}}}\\ f_{\omega^\omega}(f_{\omega^\omega}) & H_{\omega ^{\omega^\omega }\times 2 } & {\color{green} {g_{\varphi(1@\varphi(1@\omega))}}}\\ f_{\omega^\omega+1} & H_{\omega ^{\omega^\omega +1}} & {\color{green} {g_{\varphi(1@(1,0))}= {g_{\psi (\Omega ^{\Omega^\Omega})}}}}\\ f_{\omega^\omega+\omega } & H_{\omega ^{\omega^\omega +\omega }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\omega })}}}\\ f_{\omega^\omega+\omega +1 } & H_{\omega ^{\omega^\omega +\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega })}}}\\ f_{\omega^\omega+\omega\times 2 +1 } & H_{\omega ^{\omega^\omega +\omega\times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times 2 })}}}\\ f_{\omega^\omega+\omega^2 } & H_{\omega ^{\omega^\omega +\omega^ 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times \omega })}}}\\ f_{\omega^\omega+\omega^2 +1 } & H_{\omega ^{\omega^\omega +\omega^ 2 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^2 })}}}\\ f_{\omega^\omega+\omega^3 +1 } & H_{\omega ^{\omega^\omega +\omega^ 3 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^3 })}}}\\ f_{\omega^\omega\times 2 } & H_{\omega ^{\omega^\omega \times 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^\omega })}}}\\ f_{\omega^\omega\times 2 +1} & H_{\omega ^{\omega^\omega \times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 2 })}}}\\ f_{\omega^\omega\times 3 +1} & H_{\omega ^{\omega^\omega \times 3 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 3})}}}\\ f_{\omega^{\omega+1}} & H_{\omega ^{\omega^{\omega +1}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega\times \omega })}}}\\ f_{\omega^{\omega+1}+1} & H_{\omega ^{\omega^{\omega +1}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1} })}}}\\ f_{\omega^{\omega+1}+\omega +1} & H_{\omega ^{\omega^{\omega +1}+\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}+\Omega })}}}\\ f_{\omega^{\omega+1}\times 2+1} & H_{\omega ^{\omega^{\omega +1} \times 2} } & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times 2 })}}}\\ f_{\omega^{\omega+2}} & H_{\omega ^{\omega^{\omega +2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times \omega })}}}\\ f_{\omega^{\omega+2}+1} & H_{\omega ^{\omega^{\omega +2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+2} })}}}\\ f_{\omega^{\omega+3}+1} & H_{\omega ^{\omega^{\omega +3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+3} })}}}\\ f_{\omega^{\omega\times 2}} & H_{\omega ^{\omega^{\omega \times 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+\omega } })}}}\\ f_{\omega^{\omega\times 2}+1} & H_{\omega ^{\omega^{\omega \times 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 2 } })}}}\\ f_{\omega^{\omega\times 3}+1} & H_{\omega ^{\omega^{\omega \times 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 3 } })}}}\\ f_{\omega^{\omega^ 2}} & H_{\omega ^{\omega^{\omega ^ 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega\times \omega } })}}}\\ f_{\omega^{\omega^ 2}+1} & H_{\omega ^{\omega^{\omega ^ 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^2 } })}}}\\ f_{\omega^{\omega^ 3}+1} & H_{\omega ^{\omega^{\omega ^ 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^3 } })}}}\\ f_{\omega^{\omega^ \omega }} & H_{\omega ^{\omega^{\omega ^ \omega }}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega^\omega } })}}}\\ f_{\omega^{\omega^ \omega }+1} & H_{\omega ^{\omega^{\omega ^ \omega }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^\Omega } })}}}\\ f_{\omega^{\omega^{\omega^ \omega } }+1} & H_{\omega ^{\omega^{\omega ^{\omega^ \omega } }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^{\Omega^ \Omega } } })}}}\\ f_{\psi (0)=\varepsilon_0} & {\color{green}{H_{\varepsilon _0}}}/H_{\varepsilon _0+1} & {\color{green} {g_{\psi (\psi_1(0))}}}\\ \end{array} \)</nowiki> | |||
HH与FGH最终在<math>\varepsilon_0</math>处Catching了。此后每遇到<math>\varepsilon_0</math>的倍数二者都会再次Catching。 | |||
关于这之后SGH与FGH的对照分析,请移步[[Catching函数]]。 | |||
[[分类:入门]] | [[分类:入门]] | ||
[[分类:分析]] | [[分类:分析]] |
2025年7月5日 (六) 22:35的版本
增长层级(Growing Hierarchy,GH)是一种函数族,对于每个序数,是一个从自然数到自然数的函数。
不同增长率的函数能和它们建立起大致的对应关系。因此,增长层级常被用于分析函数的增长率。
在大数数学中的应用
我们知道,大数数学的目的是造出越来越巨大的自然数。为了这个目标,我们需要构造出增长的越来越快的大数函数。实际上,我们有以下两种办法来做到这件事情,即迭代和对角化:
- 迭代,即对于已有函数,我们构造出函数增长速度快于f(x).注意到迭代的方法显然不止一种。比方说,让层。这是一种迭代方法。还可以让等等.
- 对角化,即对于已有的ω个增长速度递增的函数,我们按照增长速度由小到大排序为,我们构造出函数.注意到g(x)的增长速度快于任意的.
因此,我们只需要从一个最初的函数出发,通过不断地迭代和对角化,就可以得到越来越快的函数.
现在让我们考察序数,会发现,序数存在以下两个性质:
- 对任意序数α,α的后继依然是一个序数且大于α.
- 对ω个递增序数构成的序列S来说,存在一个β是序数且满足β是S的上确界(上界要求大于等于内部所有元素,上确界是最小上界)。或者说,这里的S是β的一条基本列.
因此,我们可以从0出发,通过不断地取后继和取上确界,我们可以得到越来越大的序数.
我们会发现,构造大数函数的方法和序数的性质之间存在某种意义的对应。那么,我们可不可以直接根据序数,生成大数函数呢?答案是可以的。我们需要完成以下三件事:
- 对序数0,它要和一个最基础的函数对应。
- 对一个后继序数α'(α的后继),我们需要找到α,然后把α对应的函数进行迭代,所得到的新函数就是α'对应的函数。
- 对一个极限序数β,我们需要找到β的基本列,然后把基本列所有元素对应的函数进行对角化,得到的新函数就是β对应的函数。
但注意到这里还有一个问题:一个极限序数的基本列不止一种,那么,我们如何确定应该选取哪一条基本列呢?这个时候就需要序数记号出马了。序数记号为其极限之下的每个序数指定了唯一的标准基本列。
有了序数记号之后,我们就可以放心的运用对应关系,直接把序数转换成大数函数了。把序数转换成大数函数的工具就是增长层级。根据迭代的方法不同,增长层级也有很多种,包含FGH,HH,MGH,SGH等等。
不同增长层级的对比
MGH相比FGH,下标+1的方式仅由“嵌套n(自变量)层”变为“嵌套2层”。因此,MGH的下标每加一次,就能将函数嵌套层,实现略大于FGH中下标+1的作用。
对于使得的和,我们有
因而MGH与FGH在处Catching。
HH为“下标+1则自变量+1”,显然有。
于是当时,
,,
而。于是我们又有以下推论:
相同基本列下,对于,有,
因而HH与FGH在处Catching。
我们最后再来看SGH,其下标+1仅仅是“函数值+1”,因而SGH的增长十分依赖于序数自身的结构及基本列的选取,所以其增长地较为缓慢,且在较小尺度上和FGH没有明显的对应关系。
SGH与FGH在处Catching。在这之后,直接分析记号的序数结构与分析增长率变得几乎没有区别。
对照表
以下是较为具体的对照表,黑色代表严格相等,绿色代表略小,红色代表略大。
\( \begin{array} { c | c | c } \rm FGH & \rm MGH & \rm HH & \rm SGH & \rm EXP & -\\ \hline & & H_0 & g_\omega & x\\ f_0 & m_0 & H_1 & g_{\omega +1} & x+1\\ f_0(f_0) & m_1 & H_2 & g_{\omega +2} & x+2\\ f_0^4 & m_2 & H_4 & g_{\omega +4} & x+4\\ f_0^8 & m_3 & H_8 & g_{\omega +8} & x+8\\ f_1 & \matrix{\underset{x+2^x}{\color{red}{ m_\omega}}} & H_\omega & g_{\omega \times 2} & 2x \\ f_1(f_0) & {\color{red}{ m_\omega}} & H_{\omega +1} & g_{\omega \times 2 +2} & 2x +2\\ f_1(f_0(f_0)) & {\color{red} {m_\omega}} & H_{\omega +2} & g_{\omega \times 2 +4} & 2x +4\\ f_1(f_1) & {\color{red} {m_\omega}} & H_{\omega \times 2} & g_{\omega \times 4} & 4x\\ f_1(f_1(f_0)) & {\color{red} {m_\omega}} & H_{\omega \times 2 +1} & g_{\omega \times 4 +4} & 4x +4\\ f_1(f_1(f_1)) & {\color{red} {m_\omega}} & H_{\omega \times 3} & g_{\omega \times 8} & 8x\\ f_2 & {\color{green} {m_\omega}} & H_{\omega ^2} & {\color{green}{ g_{\omega^2}\sim g_{\omega^n}}} & x\cdot 2^x\\ f_2(f_1) & {\color{green}{ m_\omega}} & H_{\omega ^2 +\omega} & {\color{green} {g_{\omega^2}\sim g_{\omega^n}}} & x\cdot 2^{2x+1}\\ f_2(f_2) & {\color{green} {m_{\omega +1}}} & H_{\omega ^2 \times 2} & {\color{green} {g_{\omega^\omega}\sim g_{\omega^{\omega^n}}}} & x\cdot 2^{x\cdot (2^x+1)}\\ f_3 & \matrix{\underset{>x\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 2}}}} & H_{\omega ^3} & \matrix{\underset{x\uparrow\uparrow x}{\color{green} {g_{\varepsilon_0}} }} & >x\uparrow\uparrow x \\ f_3(f_1) & {\color{red} {m_{\omega \times 2}}} & H_{\omega ^3 +\omega} & \matrix{\underset{>x\uparrow\uparrow 2x-1}{\color{green}{ g_{\varepsilon_1} }}} & >x\uparrow\uparrow 2x \\ f_3(f_2) & {\color{green} {m_{\omega \times 2}}} & H_{\omega ^3 +\omega ^2} & {\color{green} {g_{\varepsilon_\omega} \sim g_{\varepsilon_{\omega^n} }}} & >x\uparrow\uparrow (x\cdot 2^x) \\ f_3(f_3) & \matrix{\underset{>x\uparrow\uparrow x\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 2 +1}}}} & H_{\omega ^3 \times 2} & {\color{green} {g_{\varepsilon_{\varepsilon_0}} }} & >x\uparrow\uparrow x\uparrow\uparrow x &{\rm tritri}=3\uparrow\uparrow\uparrow3\\ f_3(f_3(f_2)) & {\color{green} {m_{\omega \times 2 +1}}} & H_{\omega ^3 \times 2 +\omega^2} & {\color{green} {g_{\varepsilon_{\varepsilon_\omega }}\sim g_{\varepsilon_{\varepsilon_{\omega^n} }} }} & >x\uparrow\uparrow x\uparrow\uparrow (x\cdot 2^x) \\ f_3(f_3(f_3)) & \matrix{\underset{>x\uparrow\uparrow\uparrow 5}{\color{red} {m_{\omega \times 2 +2}}}} & H_{\omega ^3 \times 3} & {\color{green}{ g_{\varepsilon_{\varepsilon_{\varepsilon_0}}}} } & >x\uparrow\uparrow\uparrow 4 \\ f_4 & \matrix{\underset{>x\uparrow\uparrow\uparrow 2^x}{\color{red} {m_{\omega \times 3}}}} & H_{\omega ^4} & {\color{green} {g_{\zeta_0}} } & >x\uparrow\uparrow\uparrow (x+1)\\ f_4(f_0) & {\color{red} {m_{\omega \times 3}}} & H_{\omega ^4+1} & {\color{green} {g_{\varepsilon_{\zeta_0+1}} }} & >x\uparrow\uparrow\uparrow (x+2) \\ f_4(f_1) & {\color{red} {m_{\omega \times 3}}} & H_{\omega ^4+\omega } & {\color{green}{ g_{\zeta_1}} } & >x\uparrow\uparrow\uparrow 2x \\ f_4(f_2) & {\color{green} {m_{\omega \times 3}}} & H_{\omega ^4+\omega^2 } & {\color{green} {g_{\zeta_\omega }\sim g_{\zeta_{\omega^n} } }} & >x\uparrow\uparrow\uparrow (x\cdot 2^x) \\ f_4(f_3) & {\color{green}{ m_{\omega \times 3}}} & H_{\omega ^4+\omega^3 } & {\color{green} {g_{\zeta_{\varepsilon _0}} } } & >x\uparrow\uparrow\uparrow x\uparrow\uparrow x \\ f_4(f_4) & {\color{red} {m_{\omega \times 3+1}}} & H_{\omega ^4\times 2 } & {\color{green}{ g_{\zeta_{\zeta _0} } }} & >x\uparrow\uparrow\uparrow x\uparrow\uparrow\uparrow x \\ f_5 & {\color{red} {m_{\omega \times 4}}} & H_{\omega ^5 } & {\color{green} {g_{\eta _0} } } & >x\uparrow\uparrow\uparrow\uparrow x & G(1)=3\uparrow^4 3\\ f_5(f_4) & {\color{green} {m_{\omega \times 4}}} & H_{\omega ^5 } & {\color{green} {g_{\eta_{\zeta _0}} } } & >x\uparrow^4 x\uparrow^3 x\\ f_5(f_5) & {\color{red}{ m_{\omega \times 4+1}}} & H_{\omega ^5\times 2 } & {\color{green} {g_{\eta_{\eta _0}}} } & >x\uparrow^4 x\uparrow^4 x\\ f_6 & {\color{red}{ m_{\omega \times 5}}} & H_{\omega ^6 } & {\color{green} {g_{\varphi(4,0) }} } & >x\uparrow^5 x\\ f_7 & {\color{red} {m_{\omega \times 6}}} & H_{\omega ^7 } & {\color{green} {g_{\varphi(5,0) }} } & >x\uparrow^6 x\\ \matrix{\underset{n>2,n\in \mathbb{N} }{f_n}} & {\color{red} {m_{\omega \times (n-1)}}} & H_{\omega ^n } & {\color{green}{ g_{\varphi(n-2,0) }} } & >x\uparrow^{n-1} x\\ f_\omega & \matrix{\underset{>x\uparrow^x x}{\color{red}{ m_{\omega^2}}}} & H_{\omega ^\omega } & \matrix{\underset{>x\uparrow^x x}{\color{red} {g_{\varphi(\omega ,0) }}} } & >x\uparrow^{x-1} x\\ \end{array} \)
得益于基本列,SGH终于红了一次。但他的要开始猛进了。
\( \begin{array} { c | c | c } \rm FGH1 &\rm FGH2 & \rm MGH & \rm HH & \rm SGH & \rm EXP & -\\ \hline f_x &f_\omega & {\color{red}{ m_{\omega^2}}} & H_{\omega ^\omega } & {\color{red} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x-1} x\\ f_x(f_x)&f_x(f_\omega) & {\color{red}{ m_{\omega^2}}} & H_{\omega ^\omega } & {\color{red} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x-1} x\uparrow^{x-1} x\\ f_{x+1}(x+1)&f_\omega(f_0) & {\color{red}{ m_{\omega^2}}} & H_{\omega ^\omega +1 } & {\color{red} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x} x\\ f_{x+2}(x+2)&f_\omega(f_0(f_0)) & {\color{green}{ m_{\omega^2}}} & H_{\omega ^\omega +2 } & {\color{green} {g_{\varphi(\omega ,0) }} } & >x\uparrow^{x+1} x\\ f_{x+2}(f_{x+2})& & {\color{green}{ m_{\omega^2}}} & {\color{green}{H_{\omega ^\omega +2 }}} & {\color{green} {g_{\varphi(\omega ,\varphi(\omega ,0)) }} } & >x\uparrow^{x+1} x\uparrow^{x+1} x\\ f_{x+3}(x+3)&f_\omega(f_0^3) & {\color{green}{ m_{\omega^2}}} & H_{\omega ^\omega +3 } & {\color{green} {g_{\varphi(\omega+1 ,0) }} } & >x\uparrow^{x+2} x\\ f_{2x}(2x) &f_\omega(f_1) & \matrix{\underset{>x\uparrow^{x\uparrow^{x} x} x}{\color{red}{ m_{\omega^2+1}}}} & H_{\omega ^\omega +\omega } & {\color{red} {g_{\varphi(\omega \times 2 ,0) }} } & >x\uparrow^{2x-1} x\\ f_{2x+2}(2x+2)&f_\omega(f_1(f_0)) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega +1 } & {\color{green} {g_{\varphi(\omega \times 2 ,0) }} } & >x\uparrow^{2x +1} x\\ f_{2x+4}(2x+4)&f_\omega(f_1(f_0(f_0))) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega +2 } & {\color{green} {g_{\varphi(\omega \times 2 +2,0) }} } & >x\uparrow^{2x +3} x\\ f_{4x}(4x)&f_\omega(f_1(f_1)) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega\times 2 } & {\color{red} {g_{\varphi(\omega \times 4 ,0) }} } & >x\uparrow^{4x -1} x\\ f_{f_2}(f_2)&f_\omega(f_2) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega^2 } & {\color{green} {g_{\varphi(\omega ^2 ,0) }\sim g_{\varphi(\omega ^n ,0) }} } & >x\uparrow^{2^x} x\\ f_{f_3}(f_3)&f_\omega(f_3) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega^3 } & {\color{green} {g_{\varphi(\varepsilon _0 ,0) }} } & >x\uparrow^{x\uparrow\uparrow x} x\\ f_{f_4}(f_4)&f_\omega(f_4) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega +\omega^4 } & {\color{green} {g_{\varphi(\zeta _0 ,0) }} } & >x\uparrow^{x\uparrow\uparrow\uparrow x} x\\ f_{f_x}(f_x)&f_\omega(f_\omega ) & {\color{red}{ m_{\omega^2+1}}} & H_{\omega ^\omega \times 2 } & {\color{red} {g_{\varphi(\varphi(\omega ,0) ,0) }} } & >x\uparrow^{x\uparrow^{x-1} x} x & G(2)\\ f_{{f_{f_x}(f_x)}}(f_{f_x}(f_x)) &f_\omega(f_\omega(f_\omega ) ) & {\color{green}{ m_{\omega^2+1}}} & H_{\omega ^\omega \times 3 } & {\color{red} {g_{\varphi(\varphi(\varphi(\omega ,0) ,0) ,0) }} } & >x\uparrow^{x\uparrow^{x\uparrow^{x-1} x} x} x& G(3)\\ &f_{\omega+1} & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} } & {\color{green} {g_{\varphi(1,0,0) }} } & >x\to x\to x\to 2 & \color{red}{G(x)}\\ \end{array} \)
对于后的增长率,建议直接使用FGH分析。
\( \begin{array} { c | c | c } \rm FGH1 &\rm FGH2 & \rm MGH & \rm HH & \rm SGH & -\\ \hline &f_{\omega+1} & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} } & {\color{green} {g_{\varphi(1,0,0) }=g_{\psi (\Omega ^\Omega ) }} } & \color{red}{G(x)}\\ f_{x+2}(f_{\omega+1})& & {\color{red}{ m_{\omega^2+\omega }}} & {\color{green} {H_{\omega ^{\omega+1}}} } & {\color{green} {g_{\varphi(\omega ,\varphi(1,0,0)+1) }} } & \color{red}{G(x)}\\ f_{f_{x+2}}(f_{\omega+1})& & {\color{red}{ m_{\omega^2+\omega }}} & {\color{green} {H_{\omega ^{\omega+1}}} } & {\color{green} {g_{\varphi(\varphi(\omega ,0) ,\varphi(1,0,0)+1) }} } & \color{red}{G(x)}\\ f_{\omega }(f_{\omega+1})=f_{\omega }^{x+1}(x+1)&f_{\omega+1}(f_0) & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +1} & {\color{green} {g_{\varphi(\varphi(1,0,0),1) }} }& \color{green}{G(x)}\\ f_{\omega }^{x+2}(x+2)&f_{\omega+1}(f_0(f_0)) & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +2} & {\color{green} {g_{\varphi(\varphi(\varphi(1,0,0),1),1) }} }& \color{green}{G(x+1)}\\ f_{\omega }^{2x}(2x)&f_{\omega+1}(f_1) & {\color{red}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +\omega} & {\color{green} {g_{\varphi(1,0,1) }=g_{\psi (\Omega ^\Omega \times 2) }} }& \color{green}{G(2x-1)}\\ f_{\omega }^{x\cdot 2^x}(x\cdot 2^x)&f_{\omega+1}(f_2) & {\color{green}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +\omega^2} & {\color{green} {g_{\varphi(1,0,\omega^2 )\sim \varphi(1,0,\omega^n )}} }& \\ f_{\omega }^{f_{\omega }}(f_{\omega })&f_{\omega+1}(f_\omega ) & {\color{green}{ m_{\omega^2+\omega }}} & H_{\omega ^{\omega+1} +\omega^\omega} & {\color{green} {g_{\varphi(1,0,\varphi(\omega ,0)) }} }& \\ f_{\omega }^{f_{\omega+1 }}(f_{\omega +1})&f_{\omega+1}(f_{\omega +1}) & {\color{red}{ m_{\omega^2+\omega +1 }}} & H_{\omega ^{\omega+1} \times 2} & {\color{green} {g_{\varphi(1,0,\varphi(1,0 ,0)) }} }& \color{green}{G(G(x-1))}\\ &f_{\omega+1}^3 & {\color{green}{ m_{\omega^2+\omega +1 }}} & H_{\omega ^{\omega+1} \times 3} & {\color{green} {g_{\varphi(1,0,\varphi(1,0 ,\varphi(1,0 ,0))) }} }& \color{green}{G(G(G(x-1)))}\\ &f_{\omega+2} & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & H_{\omega ^{\omega+2} } & {\color{green} {g_{\varphi(1,1,0) }=g_{\psi (\Omega ^{\Omega+1} ) }} }&\\ f_{\omega}(f_{\omega+2})& & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & {\color{green}{H_{\omega ^{\omega+2} }}} & {\color{green} {g_{\varphi(\varphi(1,1,0),1) }} }&\\ f_{\omega +1}(f_{\omega+2})=f_{\omega+1 }^{x+1}(x+1)&f_{\omega+2}(f_0) & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & {H_{\omega ^{\omega+2}+1 }} & {\color{green} {g_{\varphi(1,0,\varphi(1,1,0)+1) }} }&\\ f_{\omega+1}^{2x}(2x)&f_{\omega+2}(f_1) & {\color{red}{ m_{\omega^2+\omega \times 2 }}} & H_{\omega ^{\omega+2}+\omega } & {\color{green} {g_{\varphi(1,1,1) }} }&\\ f_{\omega }^{f_{\omega+2 }}(f_{\omega +2})&f_{\omega+2}(f_{\omega +2}) & {\color{red}{ m_{\omega^2+\omega\times 2 +1 }}} & H_{\omega ^{\omega+2} \times 2} & {\color{green} {g_{\varphi(1,1,\varphi(1,1 ,0)) }} }& \\ &f_{\omega+3} & {\color{red}{ m_{\omega^2+\omega \times 3 }}} & H_{\omega ^{\omega+3} } & {\color{green} {g_{\varphi(1,2,0) }=g_{\psi (\Omega ^{\Omega+2} ) } }}&\\ &f_{\omega+4} & {\color{red}{ m_{\omega^2+\omega \times 4 }}} & H_{\omega ^{\omega+4} } & {\color{green} {g_{\varphi(1,3,0) }} }&\\ &f_{\omega\times 2} & {\color{red}{ m_{\omega^2\times 2 }}} & H_{\omega ^{\omega\times 2} } & {\color{red} {g_{\varphi(1,\omega ,0) }=g_{\psi (\Omega ^{\Omega+\omega })} } }&\\ \end{array} \)
\( \begin{array} { c | c | c } \rm FGH & \rm HH & \rm SGH \\ \hline f_{\omega^\omega} & H_{\omega ^{\omega^\omega }} & {\color{green} {g_{\varphi(1@\omega)}}}={\color{red} {g_{\psi (\Omega ^{\Omega^\omega})}}}\\ f_{\omega^\omega}(f_0) & H_{\omega ^{\omega^\omega }+1} & {\color{green} {g_{\varphi(1@(\omega+1))}}}\\ f_{\omega^\omega}(f_1) & H_{\omega ^{\omega^\omega }+\omega } & {\color{green} {g_{\varphi(1@(\omega\times 2))}}}\\ f_{\omega^\omega}(f_{\omega^\omega}) & H_{\omega ^{\omega^\omega }\times 2 } & {\color{green} {g_{\varphi(1@\varphi(1@\omega))}}}\\ f_{\omega^\omega+1} & H_{\omega ^{\omega^\omega +1}} & {\color{green} {g_{\varphi(1@(1,0))}= {g_{\psi (\Omega ^{\Omega^\Omega})}}}}\\ f_{\omega^\omega+\omega } & H_{\omega ^{\omega^\omega +\omega }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\omega })}}}\\ f_{\omega^\omega+\omega +1 } & H_{\omega ^{\omega^\omega +\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega })}}}\\ f_{\omega^\omega+\omega\times 2 +1 } & H_{\omega ^{\omega^\omega +\omega\times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times 2 })}}}\\ f_{\omega^\omega+\omega^2 } & H_{\omega ^{\omega^\omega +\omega^ 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times \omega })}}}\\ f_{\omega^\omega+\omega^2 +1 } & H_{\omega ^{\omega^\omega +\omega^ 2 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^2 })}}}\\ f_{\omega^\omega+\omega^3 +1 } & H_{\omega ^{\omega^\omega +\omega^ 3 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^3 })}}}\\ f_{\omega^\omega\times 2 } & H_{\omega ^{\omega^\omega \times 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^\omega })}}}\\ f_{\omega^\omega\times 2 +1} & H_{\omega ^{\omega^\omega \times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 2 })}}}\\ f_{\omega^\omega\times 3 +1} & H_{\omega ^{\omega^\omega \times 3 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 3})}}}\\ f_{\omega^{\omega+1}} & H_{\omega ^{\omega^{\omega +1}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega\times \omega })}}}\\ f_{\omega^{\omega+1}+1} & H_{\omega ^{\omega^{\omega +1}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1} })}}}\\ f_{\omega^{\omega+1}+\omega +1} & H_{\omega ^{\omega^{\omega +1}+\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}+\Omega })}}}\\ f_{\omega^{\omega+1}\times 2+1} & H_{\omega ^{\omega^{\omega +1} \times 2} } & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times 2 })}}}\\ f_{\omega^{\omega+2}} & H_{\omega ^{\omega^{\omega +2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times \omega })}}}\\ f_{\omega^{\omega+2}+1} & H_{\omega ^{\omega^{\omega +2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+2} })}}}\\ f_{\omega^{\omega+3}+1} & H_{\omega ^{\omega^{\omega +3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+3} })}}}\\ f_{\omega^{\omega\times 2}} & H_{\omega ^{\omega^{\omega \times 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+\omega } })}}}\\ f_{\omega^{\omega\times 2}+1} & H_{\omega ^{\omega^{\omega \times 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 2 } })}}}\\ f_{\omega^{\omega\times 3}+1} & H_{\omega ^{\omega^{\omega \times 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 3 } })}}}\\ f_{\omega^{\omega^ 2}} & H_{\omega ^{\omega^{\omega ^ 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega\times \omega } })}}}\\ f_{\omega^{\omega^ 2}+1} & H_{\omega ^{\omega^{\omega ^ 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^2 } })}}}\\ f_{\omega^{\omega^ 3}+1} & H_{\omega ^{\omega^{\omega ^ 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^3 } })}}}\\ f_{\omega^{\omega^ \omega }} & H_{\omega ^{\omega^{\omega ^ \omega }}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega^\omega } })}}}\\ f_{\omega^{\omega^ \omega }+1} & H_{\omega ^{\omega^{\omega ^ \omega }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^\Omega } })}}}\\ f_{\omega^{\omega^{\omega^ \omega } }+1} & H_{\omega ^{\omega^{\omega ^{\omega^ \omega } }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^{\Omega^ \Omega } } })}}}\\ f_{\psi (0)=\varepsilon_0} & {\color{green}{H_{\varepsilon _0}}}/H_{\varepsilon _0+1} & {\color{green} {g_{\psi (\psi_1(0))}}}\\ \end{array} \)
同样是由于基本列,MGH与FGH在处Catching但略小于FGH(注意Catching并不是相等),此后每遇到的倍数二者都会Catching一次。
\( \begin{array} { c | c | c } \rm FGH & \rm HH & \rm SGH \\ \hline f_{\omega^\omega} & H_{\omega ^{\omega^\omega }} & {\color{green} {g_{\varphi(1@\omega)}}}={\color{red} {g_{\psi (\Omega ^{\Omega^\omega})}}}\\ f_{\omega^\omega}(f_0) & H_{\omega ^{\omega^\omega }+1} & {\color{green} {g_{\varphi(1@(\omega+1))}}}\\ f_{\omega^\omega}(f_1) & H_{\omega ^{\omega^\omega }+\omega } & {\color{green} {g_{\varphi(1@(\omega\times 2))}}}\\ f_{\omega^\omega}(f_{\omega^\omega}) & H_{\omega ^{\omega^\omega }\times 2 } & {\color{green} {g_{\varphi(1@\varphi(1@\omega))}}}\\ f_{\omega^\omega+1} & H_{\omega ^{\omega^\omega +1}} & {\color{green} {g_{\varphi(1@(1,0))}= {g_{\psi (\Omega ^{\Omega^\Omega})}}}}\\ f_{\omega^\omega+\omega } & H_{\omega ^{\omega^\omega +\omega }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\omega })}}}\\ f_{\omega^\omega+\omega +1 } & H_{\omega ^{\omega^\omega +\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega })}}}\\ f_{\omega^\omega+\omega\times 2 +1 } & H_{\omega ^{\omega^\omega +\omega\times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times 2 })}}}\\ f_{\omega^\omega+\omega^2 } & H_{\omega ^{\omega^\omega +\omega^ 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega\times \omega })}}}\\ f_{\omega^\omega+\omega^2 +1 } & H_{\omega ^{\omega^\omega +\omega^ 2 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^2 })}}}\\ f_{\omega^\omega+\omega^3 +1 } & H_{\omega ^{\omega^\omega +\omega^ 3 +1 }} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^3 })}}}\\ f_{\omega^\omega\times 2 } & H_{\omega ^{\omega^\omega \times 2 }} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega+\Omega^\omega })}}}\\ f_{\omega^\omega\times 2 +1} & H_{\omega ^{\omega^\omega \times 2 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 2 })}}}\\ f_{\omega^\omega\times 3 +1} & H_{\omega ^{\omega^\omega \times 3 +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^\Omega\times 3})}}}\\ f_{\omega^{\omega+1}} & H_{\omega ^{\omega^{\omega +1}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^\Omega\times \omega })}}}\\ f_{\omega^{\omega+1}+1} & H_{\omega ^{\omega^{\omega +1}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1} })}}}\\ f_{\omega^{\omega+1}+\omega +1} & H_{\omega ^{\omega^{\omega +1}+\omega +1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}+\Omega })}}}\\ f_{\omega^{\omega+1}\times 2+1} & H_{\omega ^{\omega^{\omega +1} \times 2} } & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times 2 })}}}\\ f_{\omega^{\omega+2}} & H_{\omega ^{\omega^{\omega +2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+1}\times \omega })}}}\\ f_{\omega^{\omega+2}+1} & H_{\omega ^{\omega^{\omega +2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+2} })}}}\\ f_{\omega^{\omega+3}+1} & H_{\omega ^{\omega^{\omega +3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega+3} })}}}\\ f_{\omega^{\omega\times 2}} & H_{\omega ^{\omega^{\omega \times 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega+\omega } })}}}\\ f_{\omega^{\omega\times 2}+1} & H_{\omega ^{\omega^{\omega \times 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 2 } })}}}\\ f_{\omega^{\omega\times 3}+1} & H_{\omega ^{\omega^{\omega \times 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega\times 3 } })}}}\\ f_{\omega^{\omega^ 2}} & H_{\omega ^{\omega^{\omega ^ 2}}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega\times \omega } })}}}\\ f_{\omega^{\omega^ 2}+1} & H_{\omega ^{\omega^{\omega ^ 2}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^2 } })}}}\\ f_{\omega^{\omega^ 3}+1} & H_{\omega ^{\omega^{\omega ^ 3}+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^3 } })}}}\\ f_{\omega^{\omega^ \omega }} & H_{\omega ^{\omega^{\omega ^ \omega }}} & {\color{red} {g_{\psi (\Omega ^{\Omega^{\Omega^\omega } })}}}\\ f_{\omega^{\omega^ \omega }+1} & H_{\omega ^{\omega^{\omega ^ \omega }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^\Omega } })}}}\\ f_{\omega^{\omega^{\omega^ \omega } }+1} & H_{\omega ^{\omega^{\omega ^{\omega^ \omega } }+1}} & {\color{green} {g_{\psi (\Omega ^{\Omega^{\Omega^{\Omega^ \Omega } } })}}}\\ f_{\psi (0)=\varepsilon_0} & {\color{green}{H_{\varepsilon _0}}}/H_{\varepsilon _0+1} & {\color{green} {g_{\psi (\psi_1(0))}}}\\ \end{array} \)
HH与FGH最终在处Catching了。此后每遇到的倍数二者都会再次Catching。
关于这之后SGH与FGH的对照分析,请移步Catching函数。