打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

阿克曼函数:修订间差异

来自Googology Wiki
Tabelog留言 | 贡献
无编辑摘要
Phyrion留言 | 贡献
无编辑摘要
第26行: 第26行:
==== 函数值表 ====
==== 函数值表 ====
{| class="wikitable"
{| class="wikitable"
|+ A(m,n) 的值
|+ ''A''(''m'', ''n'')的值
|-
|-
! m\n
! m\n
第34行: 第34行:
! 3
! 3
! 4
! 4
! n
! ''n''
|-
|-
! 0
! 0
第40行: 第40行:
|-
|-
! 1
! 1
| 2 || 3 || 4 || 5 || 6 || <math>n + 2</math>
| 2 || 3 || 4 || 5 || 6 || <math>n + 2 = 2 + (n + 3) - 3</math>
|-
|-
! 2
! 2
| 3 || 5 || 7 || 9 || 11 || <math>2\cdot(n + 3)-3</math>
| 3 || 5 || 7 || 9 || 11 || <math>2n + 3 = 2\cdot(n + 3) - 3</math>
|-
|-
! 3
! 3
| 5 || 13 || 29 || 61 || 125 || <math>2^{(n+3)} - 3</math>
| 5 || 13 || 29 || 61 || 125 || <math>2^{(n + 3)} - 3</math>
|- style="vertical-align:top"
! rowspan="3" style="vertical-align:middle" | 4
| rowspan="1" style="border-bottom:0" | 13
| rowspan="1" style="border-bottom:0" | 65533
| rowspan="1" style="border-bottom:0" | 2<sup>65536</sup>&nbsp;–&nbsp;3
| rowspan="1" style="border-bottom:0" | <math>{2^{2^{65536}}} - 3</math>
| rowspan="1" style="border-bottom:0" | <math>{2^{2^{2^{65536}}}} - 3</math>
| rowspan="2" style="border-bottom:0" | <math>\begin{matrix}\underbrace{{2^2}^{{\cdot}^{{\cdot}^{{\cdot}^2}}}}_{n+3} - 3\end{matrix}</math>
|- style="vertical-align:bottom"
| rowspan="2" style="border-top:0" | <math>={2^{2^{2}}}-3</math><br /><math>=2\uparrow\uparrow 3 - 3</math>
| rowspan="2" style="border-top:0" | <math>={2^{2^{2^{2}}}}-3</math><br /><math>=2\uparrow\uparrow 4 - 3</math>
| rowspan="2" style="border-top:0" | <math>={2^{2^{2^{2^{2}}}}}-3</math><br /><math>=2\uparrow\uparrow 5 - 3</math>
| rowspan="2" style="border-top:0" | <math>={2^{2^{2^{2^{2^{2}}}}}}-3</math><br /><math>=2\uparrow\uparrow 6 - 3</math>
| rowspan="2" style="border-top:0" | <math>={2^{2^{2^{2^{2^{2^{2}}}}}}}-3</math><br /><math>=2\uparrow\uparrow 7 - 3</math>
|-
|-
! 4
| rowspan="1" style="border-top:0" | <math>=2\uparrow\uparrow (n+3) - 3</math>
| 13 || 65533
|- style="vertical-align:bottom"
| 2<sup>65536</sup>-3
! style="vertical-align:middle" | 5
| ''A''(3,2<sup>65536</sup>-3)
| 65533 <br /><math>=2\uparrow\uparrow(2\uparrow\uparrow 2) - 3</math><br /><math>=2\uparrow\uparrow\uparrow 3 - 3</math>
| ''A''(3,''A''(4,3))
| <math>2\uparrow\uparrow\uparrow 4 - 3</math>
| <math>\begin{matrix}\underbrace{{2^2}^{{\cdot}^{{\cdot}^{{\cdot}^2}}}} - 3 \end{matrix}</math>(n+3个2)
| <math>2\uparrow\uparrow\uparrow 5 - 3</math>
| <math>2\uparrow\uparrow\uparrow 6 - 3</math>
| <math>2\uparrow\uparrow\uparrow 7 - 3</math>
| <math>2\uparrow\uparrow\uparrow (n+3) - 3</math>
|-
|-
! 5
! 6
| 65533 || ''A''(4,65533) || ''A''(4,''A''(5,1))
| <math>2\uparrow\uparrow\uparrow\uparrow 3 - 3</math>
| ''A''(4,''A''(5,2)) || ''A''(4,''A''(5,3))
| <math>2\uparrow\uparrow\uparrow\uparrow 4 - 3</math>
| <math>2\uparrow\uparrow\uparrow\uparrow 5 - 3</math>
| <math>2\uparrow\uparrow\uparrow\uparrow 6 - 3</math>
| <math>2\uparrow\uparrow\uparrow\uparrow 7 - 3</math>
| <math>2\uparrow\uparrow\uparrow\uparrow (n+3) - 3</math>
|-
|-
! 6
! ''m''
| A(5,1) || ''A''(5,''A''(5,1))
| <math>(2\uparrow^{m-2} 3)-3</math>
| ''A''(5,A(6,1))
| <math>(2\uparrow^{m-2} 4)-3</math>
| ''A''(5,''A''(6,2)) || ''A''(5,''A''(6,3))
| <math>(2\uparrow^{m-2} 5)-3</math>
| <math>(2\uparrow^{m-2} 6)-3</math>
| <math>(2\uparrow^{m-2} 7)-3</math>
| <math>(2\uparrow^{m-2}(n+3))-3</math>
|}
|}



2025年7月3日 (四) 20:10的版本

阿克曼函数(Ackermann function)是由德国数学家 Wilhelm Ackermann 创造的非原始递归函数,后来由 Rozsa Peter 和 Raphael M. Robinson 简化。阿克曼函数的确切定义因作者而异。

定义

Robinson 的版本[1]是最常被使用的 Ackermann 函数:

A(m,n)={n+1,m=0A(m1,1),m0n=0A(m1,A(m,n1)),m0n0

在这个定义下,A(x,y)=2x2(y+3)3,它的 FGH 增长率约为 ω

示例

A(2,2)=A(1,A(2,1))=A(1,A(1,A(2,0)))=A(1,A(1,A(1,1)))=A(1,A(1,A(0,A(1,0))))=A(1,A(1,A(0,A(0,1))))=A(1,A(1,A(0,2)))=A(1,A(1,3))=A(1,A(0,A(1,2)))=A(1,A(0,A(0,A(1,1))))=A(1,A(0,A(0,A(0,A(1,0)))))=A(1,A(0,A(0,A(0,A(0,1)))))=A(1,A(0,A(0,A(0,2))))=A(1,A(0,A(0,3)))=A(1,A(0,4))=A(1,5)=A(0,A(1,4))=A(0,A(0,A(1,3)))=A(0,A(0,A(0,A(1,2))))=A(0,A(0,A(0,A(0,A(1,1)))))=A(0,A(0,A(0,A(0,A(0,A(1,0))))))=A(0,A(0,A(0,A(0,A(0,A(0,1))))))=A(0,A(0,A(0,A(0,A(0,2)))))=A(0,A(0,A(0,A(0,3))))=A(0,A(0,A(0,4)))=A(0,A(0,5))=A(0,6)=7

函数值表

A(mn)的值
m\n 0 1 2 3 4 n
0 1 2 3 4 5 n+1
1 2 3 4 5 6 n+2=2+(n+3)3
2 3 5 7 9 11 2n+3=2(n+3)3
3 5 13 29 61 125 2(n+3)3
4 13 65533 265536 – 3 22655363 222655363 222n+33
=2223
=233
=22223
=243
=222223
=253
=2222223
=263
=22222223
=273
=2(n+3)3
5 65533
=2(22)3
=233
243 253 263 273 2(n+3)3
6 233 243 253 263 273 2(n+3)3
m (2m23)3 (2m24)3 (2m25)3 (2m26)3 (2m27)3 (2m2(n+3))3

其他定义

原始定义

A(n,x,y)={x+y,n=0A(n1,A((A(n1,x))))y times,n0

它可以用上箭头表示法表示为 A(n,x,y)=xn2y,但是在它被定义前上箭头表示法还未被发明。它是根据高阶原始递归(即函数上的原始递归)定义的。[2]

Friedman 的定义

A(x,y)={2,y=12y,x=1y>1A(x1,A(x,y1)),x>1y>1

在这个定义下,A(x,y)=2x1y[3]

其他内容

定义在 R* 上的 Ackermann 函数

CompactStar 的定义:[4]

A(x,y)={x+y+1,x<1A(x1,yA(x1,1)y+1),x1y<1A(x1,A(x,y1)),x1y1

Ackermann 函数和 Ackermann 数

数列 An=A(n+2,n,n)(使用原始定义)被称为 Ackermann 数,[5]这里 An=nnn

  1. Weisstein, Eric W. "Ackermann Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/AckermannFunction.html
  2. Ackermann, Wilhelm (1928). "Zum Hilbertschen Aufbau der reellen Zahlen". Mathematische Annalen. 99: 118–133. https://doi.org/10.1007%2FBF01459088
  3. Harvey M. Friedman. THE ACKERMANN FUNCTION IN ELEMENTARY ALGEBRAIC GEOMETRY, October 21, 2000. https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/1/1952/files/2014/01/AckAlgGeom102100-1rrdkag.pdf
  4. CompactStar. Continuous Ackermann function, June15, 2023. https://nirvanasupermind.github.io/googology/continuous-ackermann-function.html
  5. Ackermann Number | Googology Wiki. Cooperation. January 1, 2001. https://googology.fandom.com/wiki/Ackermann_number