打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

BMS分析:修订间差异

来自Googology Wiki
Tabelog留言 | 贡献
无编辑摘要
Z留言 | 贡献
无编辑摘要
第1行: 第1行:
目前使用的 OCF 为 M 型,后续补充 BOCF
==== Part 1:0~BO ====
主词条:[[BMS分析Part1:0~BO]]


==== Part 1:单行 BMS(PrSS) ====
<math>\varnothing=0</math>
<math>(0)=1</math>
<math>(0)(0)=2</math>
<math>(0)(0)(0)=3</math>
<math>(0)(1)=(0)(0)(0)(0)(0)...=\omega</math>
<math>(0)(1)(0)=\omega+1</math>
<math>(0)(1)(0)(0)=\omega+2</math>
<math>(0)(1)(0)(1)=\omega\times2</math>
<math>(0)(1)(0)(1)(0)(1)=\omega\times3</math>
<math>(0)(1)(1)=(0)(1)(0)(1)(0)(1)...=\omega^2</math>
<math>(0)(1)(1)(0)=\omega^2+1</math>
<math>(0)(1)(1)(0)(1)=\omega^2+\omega</math>
<math>(0)(1)(1)(0)(1)(0)(1)=\omega^2+\omega\times2</math>
<math>(0)(1)(1)(0)(1)(1)=\omega^2\times2</math>
<math>(0)(1)(1)(0)(1)(1)(0)(1)=\omega^2\times2+\omega</math>
<math>(0)(1)(1)(0)(1)(1)(0)(1)(1)=\omega^2\times3</math>
<math>(0)(1)(1)(1)=\omega^3</math>
<math>(0)(1)(1)(1)(1)=\omega^4</math>
<math>(0)(1)(2)=(0)(1)(1)(1)(1)...=\omega^\omega</math>
<math>(0)(1)(2)(0)(1)(2)=\omega^\omega\times2</math>
<math>(0)(1)(2)(1)=\omega^{\omega+1}</math>
<math>(0)(1)(2)(1)(1)=\omega^{\omega+2}</math>
<math>(0)(1)(2)(1)(1)(1)=\omega^{\omega+3}</math>
<math>(0)(1)(2)(1)(2)=\omega^{\omega\times2}</math>
<math>(0)(1)(2)(1)(2)(1)(2)=\omega^{\omega\times3}</math>
<math>(0)(1)(2)(2)=\omega^{\omega^2}</math>
<math>(0)(1)(2)(2)(1)=\omega^{\omega^2+1}</math>
<math>(0)(1)(2)(2)(1)(2)=\omega^{\omega^2+\omega}</math>
<math>(0)(1)(2)(2)(1)(2)(2)=\omega^{\omega^2\times2}</math>
<math>(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)=\omega^{\omega^2\times3}</math>
<math>(0)(1)(2)(2)(2)=\omega^{\omega^3}</math>
<math>(0)(1)(2)(2)(2)(2)=\omega^{\omega^4}</math>
<math>(0)(1)(2)(3)=(0)(1)(2)(2)(2)(2)...=\omega^{\omega^\omega}</math>
<math>(0)(1)(2)(3)(4)=\omega^{\omega^{\omega^\omega}}</math>
<math>(0)(1)(2)(3)(4)(5)=\omega^{\omega^{\omega^{\omega^\omega}}}</math>
<math>(0)(1,1)=(0)(1)(2)(3)(4)(5)(6)...=\varepsilon_0</math>
==== Part 2:双行 BMS ====
{| class="wikitable"
|-
! BMS !! Veblen !! MOCF
|-
| <math>(0)(1,1)</math>|| <math>\varepsilon_0</math>
|-
| <math>(0)(1,1)(0,0)</math>|| <math>\varepsilon_0+1</math>
|-
| <math>(0)(1,1)(0,0)(1,0)</math>|| <math>\varepsilon_0+\omega</math>
|-
| <math>(0)(1,1)(0,0)(1,1)</math>|| <math>\varepsilon_0\times2</math>
|-
| <math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)</math>|| <math>\varepsilon_0\times3</math>
|-
| <math>(0)(1,1)(1,0)</math>|| <math>\varepsilon_0\times\omega</math>
|-
| <math>(0)(1,1)(1,0)(1,0)</math>|| <math>\varepsilon_0\times\omega^2</math>
|-
| <math>(0)(1,1)(1,0)(2,0)</math>|| <math>\varepsilon_0\times\omega^\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,0)(3,0)</math>|| <math>\varepsilon_0\times\omega^{\omega^\omega}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)</math>|| <math>\varepsilon_0^2</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)</math>|| <math>\varepsilon_0^2\times\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)</math>|| <math>\varepsilon_0^2\times\omega^\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)</math>|| <math>\varepsilon_0^3</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)</math>|| <math>\varepsilon_0^4</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)</math>|| <math>\varepsilon_0^\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)</math>|| <math>\varepsilon_0^{\omega+1}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)</math>|| <math>\varepsilon_0^{\omega+2}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)</math>|| <math>\varepsilon_0^{\omega\times2}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)</math>|| <math>\varepsilon_0^{\omega\times3}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)</math>|| <math>\varepsilon_0^{\omega^2}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)</math>|| <math>\varepsilon_0^{\omega^\omega}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)</math>|| <math>\varepsilon_0^{\omega^{\omega^\omega}}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)</math>|| <math>\varepsilon_0^{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)</math>|| <math>\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)</math>|| <math>\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math>
|-
| <math>(0)(1,1)(1,1)</math>|| <math>\varepsilon_1</math>
|-
| <math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)</math>|| <math>\varepsilon_1\times2</math>
|-
| <math>(0)(1,1)(1,1)(1,0)</math>|| <math>\varepsilon_1\times\omega</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)</math>|| <math>\varepsilon_1\times\varepsilon_0</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)</math>|| <math>\varepsilon_1\times\varepsilon_0^2</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)</math>|| <math>\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)</math>|| <math>\varepsilon_1^2</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)</math>|| <math>\varepsilon_1^\omega</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)</math>|| <math>\varepsilon_1^{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)</math>|| <math>\varepsilon_1^{\varepsilon_1}</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)</math>|| <math>\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math>
|-
| <math>(0)(1,1)(1,1)(1,1)</math>|| <math>\varepsilon_2</math>
|-
| <math>(0)(1,1)(1,1)(1,1)(1,1)</math>|| <math>\varepsilon_3</math>
|-
| <math>(0)(1,1)(2,0)</math>|| <math>\varepsilon_\omega</math>
|-
| <math>(0)(1,1)(2,0)(1,0)</math>|| <math>\varepsilon_\omega\times\omega</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)</math>|| <math>\varepsilon_\omega\times\varepsilon_0</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)</math>|| <math>\varepsilon_\omega\times\varepsilon_1</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)</math>|| <math>\varepsilon_\omega\times\varepsilon_2</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)</math>|| <math>\varepsilon_\omega\times\varepsilon_3</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)</math>|| <math>\varepsilon_\omega^2</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)</math>|| <math>\varepsilon_\omega^{\varepsilon_\omega}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)</math>|| <math>\varepsilon_{\omega+1}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(1,1)</math>|| <math>\varepsilon_{\omega+2}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)</math>|| <math>\varepsilon_{\omega+3}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(2,0)</math>|| <math>\varepsilon_{\omega\times2}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</math>|| <math>\varepsilon_{\omega\times3}</math>
|-
| <math>(0)(1,1)(2,0)(2,0)</math>|| <math>\varepsilon_{\omega^2}</math>
|-
| <math>(0)(1,1)(2,0)(2,0)(2,0)</math>|| <math>\varepsilon_{\omega^3}</math>
|-
| <math>(0)(1,1)(2,0)(3,0)</math>|| <math>\varepsilon_{\omega^\omega}</math>
|-
| <math>(0)(1,1)(2,0)(3,0)(4,0)</math>|| <math>\varepsilon_{\omega^{\omega^\omega}}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)</math>|| <math>\varepsilon_{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(1,1)</math>|| <math>\varepsilon_{\varepsilon_0+1}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(3,1)</math>|| <math>\varepsilon_{\varepsilon_1}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(4,0)</math>|| <math>\varepsilon_{\varepsilon_\omega}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)</math>|| <math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)</math>|| <math>\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math>
|-
| <math>(0)(1,1)(2,1)</math>|| <math>\zeta_0</math>
|-
| <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)</math>|| <math>\zeta_0^2</math>
|-
| <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)</math>|| <math>\zeta_0^{\zeta_0}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)</math>|| <math>\varepsilon_{\zeta_0+1}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)</math>|| <math>\varepsilon_{\zeta_0+1}^2</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(1,1)</math>|| <math>\varepsilon_{\zeta_0+2}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)</math>|| <math>\varepsilon_{\zeta_0+\omega}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)</math>|| <math>\varepsilon_{\zeta_0+\varepsilon_0}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)</math>|| <math>\varepsilon_{\zeta_0\times2}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)</math>|| <math>\varepsilon_{\varepsilon_{\zeta_0+1}}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)</math>|| <math>\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)</math>|| <math>\zeta_1</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)</math>|| <math>\varepsilon_{\zeta_1+1}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)</math>|| <math>\varepsilon_{\zeta_1+\omega}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</math>|| <math>\zeta_2</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</math>|| <math>\zeta_3</math>
|-
| <math>(0)(1,1)(2,1)(2,0)</math>|| <math>\zeta_\omega</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(2,0)</math>|| <math>\zeta_{\omega^2}</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(3,1)</math>|| <math>\zeta_{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)</math>|| <math>\zeta_{\zeta_0}</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)</math>|| <math>\zeta_{\zeta_{\zeta_0}}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)</math>|| <math>\eta_0</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)</math>|| <math>\varepsilon_{\eta_0+1}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)</math>|| <math>\zeta_{\eta_0+1}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)</math>|| <math>\zeta_{\zeta_{\eta_0+1}}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)</math>|| <math>\eta_1</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)</math>|| <math>\eta_2</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(2,0)</math>|| <math>\eta_\omega</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(2,1)</math>|| <math>\varphi(4,0)</math>|| <math>\psi(\Omega^3)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)</math>|| <math>\varphi(\omega,0)</math>|| <math>\psi(\Omega^\omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)</math>|| <math>\varphi(1,\varphi(\omega,0)+1)</math>|| <math>\psi(\Omega^\omega+1)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)</math>|| <math>\varphi(2,\varphi(\omega,0)+1)</math>|| <math>\psi(\Omega^\omega+\Omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)</math>|| <math>\varphi(3,\varphi(\omega,0)+1)</math>|| <math>\psi(\Omega^\omega+\Omega^2)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)</math>|| <math>\varphi(\omega,1)</math>|| <math>\psi(\Omega^\omega\times2)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)</math>|| <math>\varphi(\omega,2)</math>|| <math>\psi(\Omega^\omega\times3)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,0)</math>|| <math>\varphi(\omega,\omega)</math>|| <math>\psi(\Omega^\omega\times\omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)</math>|| <math>\varphi(\omega+1,0)</math>|| <math>\psi(\Omega^{\omega+1})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)</math>|| <math>\varphi(\omega+2,0)</math>|| <math>\psi(\Omega^{\omega+2})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)</math>|| <math>\varphi(\omega+3,0)</math>|| <math>\psi(\Omega^{\omega+3})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)</math>|| <math>\varphi(\omega\times2,0)</math>|| <math>\psi(\Omega^{\omega\times2})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)</math>|| <math>\varphi(\omega\times3,0)</math>|| <math>\psi(\Omega^{\omega\times3})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(3,0)</math>|| <math>\varphi(\omega^2,0)</math>|| <math>\psi(\Omega^{\omega^2})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)</math>|| <math>\varphi(\varphi(1,0),0)</math>|| <math>\psi(\Omega^{\psi(0)})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)</math>|| <math>\varphi(\varphi(2,0),0)</math>|| <math>\psi(\Omega^{\psi(\Omega)})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)</math>|| <math>\varphi(\varphi(\omega,0),0)</math>|| <math>\psi(\Omega^{\psi(\Omega^\omega)})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)</math>|| <math>\varphi(\varphi(\varphi(\omega,0),0),0)</math>|| <math>\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)</math>|| <math>\varphi(1,0,0)=\Gamma_0</math>|| <math>\psi(\Omega^\Omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)</math>|| <math>\varphi(1,0,1)=\Gamma_1</math>|| <math>\psi(\Omega^\Omega\times2)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)</math>|| <math>\varphi(1,0,2)=\Gamma_2</math>|| <math>\psi(\Omega^\Omega\times3)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,0)</math>|| <math>\varphi(1,0,\omega)=\Gamma_\omega</math>|| <math>\psi(\Omega^\Omega\times\omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)</math>|| <math>\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}</math>|| <math>\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)</math>|| <math>\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}</math>|| <math>\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)</math>|| <math>\varphi(1,1,0)</math>|| <math>\psi(\Omega^{\Omega+1})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)</math>|| <math>\varphi(1,2,0)</math>|| <math>\psi(\Omega^{\Omega+2})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)</math>|| <math>\varphi(1,\omega,0)</math>|| <math>\psi(\Omega^{\Omega+\omega})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)</math>|| <math>\varphi(1,\varphi(1,\omega,0),0)</math>|| <math>\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)</math>|| <math>\psi(2,0,0)</math>|| <math>\psi(\Omega^{\Omega\times2})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)</math>|| <math>\psi(3,0,0)</math>|| <math>\psi(\Omega^{\Omega\times3})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(3,0)</math>|| <math>\varphi(\omega,0,0)</math>|| <math>\psi(\Omega^{\Omega\times\omega})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(3,1)</math>|| <math>\varphi(1,0,0,0)</math>|| <math>\psi(\Omega^{\Omega^2})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)</math>|| <math>\varphi(1,0,0,0,0)</math>|| <math>\psi(\Omega^{\Omega^3})</math>
|}
{| class="wikitable"
|-
! BMS !! MOCF
|-
| <math>(0)(1,1)(2,1)(3,1)(4,0)</math>|| <math>\psi(\Omega^{\Omega^\omega})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)</math>|| <math>\psi(\Omega^{\Omega^{\psi(0)}})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)</math>|| <math>\psi(\Omega^{\Omega^{\psi(\Omega)}})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)</math>|| <math>\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(4,1)</math>|| <math>\psi(\Omega^{\Omega^\Omega})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(4,1)(5,1)</math>|| <math>\psi(\Omega^{\Omega^{\Omega^\Omega}})</math>
|-
| <math>(0)(1,1)(2,2)</math>|| <math>\psi(\psi_1(0))</math>
|-
| <math>(0)(1,1)(2,2)(1,1)</math>|| <math>\psi(\psi_1(0)+1)</math>
|-
| <math>(0)(1,1)(2,2)(1,1)(2,1)</math>|| <math>\psi(\psi_1(0)+\Omega)</math>
|-
| <math>(0)(1,1)(2,2)(1,1)(2,1)(3,1)</math>|| <math>\psi(\psi_1(0)+\Omega^\Omega)</math>
|-
| <math>(0)(1,1)(2,2)(1,1)(2,2)</math>|| <math>\psi(\psi_1(0)\times2)</math>
|-
| <math>(0)(1,1)(2,2)(2,0)</math>|| <math>\psi(\psi_1(0)\times\omega)</math>
|-
| <math>(0)(1,1)(2,2)(2,1)</math>|| <math>\psi(\psi_1(0)\times\Omega)</math>
|-
| <math>(0)(1,1)(2,2)(2,1)(3,0)</math>|| <math>\psi(\psi_1(0)\times\Omega^\omega)</math>
|-
| <math>(0)(1,1)(2,2)(2,1)(3,1)</math>|| <math>\psi(\psi_1(0)\times\Omega^\Omega)</math>
|-
| <math>(0)(1,1)(2,2)(2,1)(3,2)</math>|| <math>\psi(\psi_1(0)^2)</math>
|-
| <math>(0)(1,1)(2,2)(2,1)(3,2)(3,0)</math>|| <math>\psi(\psi_1(0)^\omega)</math>
|-
| <math>(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)</math>|| <math>\psi(\psi_1(0)^{\psi_1(0)})</math>
|-
| <math>(0)(1,1)(2,2)(2,2)</math>|| <math>\psi(\psi_1(1))</math>
|-
| <math>(0)(1,1)(2,2)(3,0)</math>|| <math>\psi(\psi_1(\omega))</math>
|-
| <math>(0)(1,1)(2,2)(3,1)(4,2)</math>|| <math>\psi(\psi_1(\psi_1(0)))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)</math>|| <math>\psi(\Omega_2)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(1,1)</math>|| <math>\psi(\Omega_2+\Omega)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)</math>|| <math>\psi(\Omega_2+\psi_1(0))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2)</math>|| <math>\psi(\Omega_2+\psi_1(\psi_1(0)))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,0)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2)\times\omega)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2)^2)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2)^\omega)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)})</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+1))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,0)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\omega))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)\times\omega))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^\omega))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)}))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+1)))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\omega)))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2)</math>|| <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2))))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,2)</math>|| <math>\psi(\Omega_2\times2)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(3,0)</math>|| <math>\psi(\Omega_2\times\omega)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2)</math>|| <math>\psi(\Omega_2\times\psi_1(\Omega_2))</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(3,2)</math>|| <math>\psi(\Omega_2^2)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(4,0)</math>|| <math>\psi(\Omega_2^\omega)</math>
|-
| <math>(0)(1,1)(2,2)(3,2)(4,2)</math>|| <math>\psi(\Omega_2^{\Omega_2})</math>
|-
| <math>(0)(1,1)(2,2)(3,3)</math>|| <math>\psi(\psi_2(0))</math>
|-
| <math>(0)(1,1)(2,2)(3,3)(4,3)</math>|| <math>\psi(\Omega_3)</math>
|-
| <math>(0)(1,1)(2,2)(3,3)(4,4)</math>|| <math>\psi(\psi_3(0))</math>
|-
| <math>(0)(1,1,1)=(0)(1,1)(2,2)(3,3)\cdots</math>|| <math>\psi(\Omega_\omega)</math>
|}
==== Part 3:三行 BMS (0)(1,1,1)~(0)(1,1,1)(2,1,0) ====
三行之后 BMS 的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。
三行之后 BMS 的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。



2025年8月20日 (三) 08:39的版本

Part 1:0~BO

主词条:BMS分析Part1:0~BO

三行之后 BMS 的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。

BMS MOCF
(0)(1,1,1) ψ(Ωω)
(0)(1,1,1)(1,1,0) ψ(Ωω+1)
(0)(1,1,1)(1,1,0)(2,0,0) ψ(Ωω+ω)
(0)(1,1,1)(1,1,0)(2,1,0) ψ(Ωω+Ω)
(0)(1,1,1)(1,1,0)(2,2,0) ψ(Ωω+ψ1(0))
(0)(1,1,1)(1,1,0)(2,2,0)(2,2,0) ψ(Ωω+ψ1(1))
(0)(1,1,1)(1,1,0)(2,2,0)(3,0,0) ψ(Ωω+ψ1(ω))
(0)(1,1,1)(1,1,0)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω+ψ1(ψ1(0)))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0) ψ(Ωω+ψ1(Ω2))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,0,0) ψ(Ωω+ψ1(Ω2)×ω)
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,1,0) ψ(Ωω+ψ1(Ω2)ω)
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0) ψ(Ωω+ψ1(Ω2+1))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,0,0) ψ(Ωω+ψ1(Ω2+ω))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω+ψ1(Ω2+ψ1(0)))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,2,0) ψ(Ωω+ψ1(Ω2×2))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,0,0) ψ(Ωω+ψ1(Ω2×ω))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,2,0) ψ(Ωω+ψ1(Ω22))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(4,2,0) ψ(Ωω+ψ1(Ω2Ω2))
(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0) ψ(Ωω+ψ1(ψ2(0)))
(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)(4,4,0) ψ(Ωω+ψ1(ψ3(0)))
(0)(1,1,1)(1,1,0)(2,2,1) ψ(Ωω+ψ1(Ωω))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0) ψ(Ωω+ψ1(Ωω+1))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,0,0) ψ(Ωω+ψ1(Ωω+ω))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω+ψ1(Ωω+ψ1(0)))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)(5,3,0) ψ(Ωω+ψ1(Ωω+ψ1(ψ2(0))))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,1) ψ(Ωω+ψ1(Ωω+ψ1(Ωω)))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0) ψ(Ωω+Ω2)
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,0) ψ(Ωω+ψ2(0))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0) ψ(Ωω+Ω3)
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,4,0) ψ(Ωω+ψ3(0))
(0)(1,1,1)(1,1,1) ψ(Ωω×2)
(0)(1,1,1)(2,0,0) ψ(Ωω×ω)
(0)(1,1,1)(2,1,0) ψ(Ωω×Ω)

Part 4:(0)(1,1,1)(2,1,0)~(0)(1,1,1)(2,1,1)

这一部分涉及到提升效应

BMS MOCF
(0)(1,1,1)(2,1,0) ψ(Ωω×Ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1) ψ(Ωω×Ω+ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,0,0) ψ(Ωω×Ω+ψ1(Ωω×ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0) ψ(Ωω×Ω+ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0) ψ(Ωω×Ω+ψ1(Ωω×Ω+1))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω×Ω+ψ1(Ωω×Ω+ψ1(0)))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,1)(5,1,0) ψ(Ωω×Ω+ψ1(Ωω×Ω+ψ1(Ωω×Ω)))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,2,0) ψ(Ωω×Ω+Ω2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,0) ψ(Ωω×Ω+ψ2(0))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,1)(4,1,0)(3,3,0)(4,3,0) ψ(Ωω×Ω+Ω3)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1) ψ(Ωω×Ω+Ωω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0)(2,2,1) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω+Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,0,0) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω+Ωω)×ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω+Ωω+1))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0)(3,2,0) ψ(Ωω×Ω+Ωω+Ω2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,1) ψ(Ωω×Ω+Ωω×2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,0,0) ψ(Ωω×Ω+Ωω×ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0) ψ(Ωω×Ω×2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,0,0) ψ(Ωω×Ω×ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0) ψ(Ωω×ψ1(0))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1) ψ(Ωω×ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0) ψ(Ωω×ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1) ψ(Ωω×ψ1(Ωω×Ω+Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1)(5,1,0) ψ(Ωω×ψ1(Ωω×Ω×2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(6,2,1) ψ(Ωω×ψ1(Ωω×ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0) ψ(Ωω×Ω2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,2,0)(5,3,0) ψ(Ωω×ψ2(0))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,0) ψ(Ωω×Ω3)
(0)(1,1,1)(2,1,0)(1,1,1) ψ(Ωω2)
(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0) ψ(Ωω2+1)
(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1) ψ(Ωω2+ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)(3,1,0) ψ(Ωω2+ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)(3,1,0)(2,1,0)(3,2,1)(4,1,0) ψ(Ωω2+ψ1(Ωω×Ω+ψ1(Ωω×Ω)))
(0)(1,1,1)(2,1,0)(1,1,1)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,1)(4,1,0) ψ(Ωω2+ψ1(Ωω×Ω+Ω2))
(0)(1,1,1)(2,1,0)(1,1,1)(2,1,0)(1,1,1) ψ(Ωω2×2)
(0)(1,1,1)(2,1,0)(2,0,0) ψ(Ωω2×ω)
(0)(1,1,1)(2,1,0)(2,1,0) ψ(Ωω2×Ω)
(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1) ψ(Ωω2×Ω+ψ1(Ωω))
(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,1,0)(2,2,1) ψ(Ωω2×Ω+Ωω2)
(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(3,2,0) ψ(Ωω2×Ω2)
(0)(1,1,1)(2,1,0)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(3,2,0)(2,2,0)(3,3,1)(4,3,0)(4,3,0) ψ(Ωω2×Ω3)
(0)(1,1,1)(2,1,0)(2,1,0)(1,1,1) ψ(Ωω3)
(0)(1,1,1)(2,1,0)(2,1,0)(2,1,0)(1,1,1) ψ(Ωω4)
(0)(1,1,1)(2,1,0)(3,0,0) ψ(Ωωω)
(0)(1,1,1)(2,1,0)(3,1,0) ψ(ΩωΩ)
(0)(1,1,1)(2,1,0)(3,1,0)(1,1,1) ψ(ΩωΩω)
(0)(1,1,1)(2,1,0)(3,1,0)(4,1,0)(1,1,1) ψ(ΩωΩωΩω)
(0)(1,1,1)(2,1,0)(3,2,0) ψ(ψω(0))
(0)(1,1,1)(2,1,0)(3,2,0)(1,1,1) ψ(ψω(0)+Ωω)
(0)(1,1,1)(2,1,0)(3,2,0)(1,1,1)(2,1,0)(3,2,0) ψ(ψω(0)×2)
(0)(1,1,1)(2,1,0)(3,2,0)(2,0,0) ψ(ψω(0)×ω)
(0)(1,1,1)(2,1,0)(3,2,0)(2,1,0) ψ(ψω(0)×Ω)
(0)(1,1,1)(2,1,0)(3,2,0)(2,1,0)(3,2,0) ψ(ψω(0)2)
(0)(1,1,1)(2,1,0)(3,2,0)(3,0,0) ψ(ψω(0)ω)
(0)(1,1,1)(2,1,0)(3,2,0)(3,1,0) ψ(ψω(0)Ω)
(0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)(4,2,0) ψ(ψω(0)ψω(0))
(0)(1,1,1)(2,1,0)(3,2,0)(3,1,0)(4,2,0)(4,1,0)(5,2,0) ψ(ψω(0)ψω(0)ψω(0))
(0)(1,1,1)(2,1,0)(3,2,0)(3,2,0) ψ(ψω(1))
(0)(1,1,1)(2,1,0)(3,2,0)(3,2,0)(3,2,0) ψ(ψω(2))
(0)(1,1,1)(2,1,0)(3,2,0)(4,0,0) ψ(ψω(ω))
(0)(1,1,1)(2,1,0)(3,2,0)(4,1,0) ψ(ψω(Ω))
(0)(1,1,1)(2,1,0)(3,2,0)(4,1,0)(5,2,0) ψ(ψω(ψω(0)))
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0) ψ(Ωω+1)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(1,1,1)(2,1,1)(3,2,0)(4,2,0) ψ(Ωω+1+ψω(Ωω+1))
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(3,2,0)(4,2,0) ψ(Ωω+1×2)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(4,0,0) ψ(Ωω+1×ω)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(4,1,0) ψ(Ωω+1×Ω)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(4,2,0) ψ(Ωω+12)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,0,0) ψ(Ωω+1ω)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,1,0) ψ(Ωω+1Ω)
(0)(1,1,1)(2,1,0)(3,2,0)(4,2,0)(5,2,0) ψ(Ωω+1Ωω+1)
(0)(1,1,1)(2,1,0)(3,2,0)(4,3,0) ψ(ψω+1(0))
(0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)(5,3,0) ψ(Ωω+2)
(0)(1,1,1)(2,1,0)(3,2,0)(4,3,0)(5,4,0) ψ(ψω+2(0))
(0)(1,1,1)(2,1,0)(3,2,1) ψ(Ωω×2)
(0)(1,1,1)(2,1,0)(3,2,1)(1,1,1) ψ(Ωω×2+Ωω)
(0)(1,1,1)(2,1,0)(3,2,1)(1,1,1)(2,1,0)(3,2,1) ψ(Ωω×2+ψω(Ωω×2))
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0) ψ(Ωω×2+ψω(Ωω×2+1))
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,1,0)(5,2,1) ψ(Ωω×2+ψω(Ωω×2+ψω(Ωω×2)))
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,2,0) ψ(Ωω×2+Ωω+1)
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1) ψ(Ωω×2+ψω+1(Ωω×2))
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)(4,3,0) ψ(Ωω×2+ψω+1(Ωω×2+1))
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)(4,3,0)(5,2,0) ψ(Ωω×2+ψω+1(Ωω×2+Ωω+1))
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,0)(4,3,1)(4,3,0)(5,2,0) ψ(Ωω×2+Ωω+2)
(0)(1,1,1)(2,1,0)(3,2,1)(3,2,1) ψ(Ωω×2×2)
(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0) ψ(Ωω×2×Ω)
(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)(1,1,1) ψ(Ωω×2×Ωω)
(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)(5,2,0) ψ(Ωω×2×ψω(0))
(0)(1,1,1)(2,1,0)(3,2,1)(4,1,0)(5,2,1) ψ(Ωω×2×ψω(Ωω×2))
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0) ψ(Ωω×2×Ωω+1)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,0)(4,3,1) ψ(Ωω×2×Ωω+1+ψω+1(Ωω×2))
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,0)(4,3,1)(5,2,0)(4,3,1) ψ(Ωω×2×Ωω+1+Ωω×2)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,0)(4,3,1)(5,3,0) ψ(Ωω×2×Ωω+2)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(3,2,1) ψ(Ωω×22)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(4,2,0)(3,2,1) ψ(Ωω×23)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,0,0) ψ(Ωω×2ω)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,2,0) ψ(Ωω×2Ωω+1)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,2,0)(3,2,1) ψ(Ωω×2Ωω×2)
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,3,0) ψ(ψω×2(0))
(0)(1,1,1)(2,1,0)(3,2,1)(4,2,0)(5,3,1) ψ(Ωω×3)
(0)(1,1,1)(2,1,1) ψ(Ωω2)