|
|
| 第1行: |
第1行: |
| 【[[Googolism - Part 5|更小]] | [[Googolism|主页]] | [[Googolism - Part 7|更大]]】 | | 【[[Googolism - Part 5|更小]] | [[Googolism|主页]] | 更大】 |
|
| |
|
| === Part 6.1: <math>f_{\omega}(f_3(10))</math> ~ <math>f_{\omega+1}(f_3(10))</math> ===
| |
|
| |
|
| * <nowiki>Giggotri, {10, 10, {10, 100, 2}}</nowiki>
| |
| * Great grangol / Grangolsuplex, E100##2#2
| |
| * Grangolsuplexigong, E100,000##2#2
| |
| * Googoldexisuplex, E100##(E100#1#2)
| |
| * Googolplexidexisuplex, E100##(E100#2#2)
| |
| * Grangoldexisuplex, E100##(E100#100#2)
| |
| * Grangoldudexisuplex, E100##(E100#100#3)
| |
| * '''Moser''', 2[2[5, 2]] in a mega-gon
| |
| * Joyce's tetratri, g(2,1,1,4,3,3)
| |
| * Tritriplex, {3,3,1,2}
| |
| * Grand Moser, 3[3[5, 3]] in a Grand Mega-gon
| |
| * Great Moser, 4[4[5, 4]] in a Great Mega-gon
| |
| * Gong Moser, 5[5[5, 5]] in a Gong Mega-gon
| |
| * <nowiki>Gaggotri, {10, 10, {10, 100, 3}}</nowiki>
| |
| * Mosiston, 10 in a megiston-gon
| |
| * Great greagol / Greagolsuplex, E100##3#2
| |
| * Graham grahal / grabio, <math>g_2 = 3 \underbrace{\uparrow\uparrow\ldots\uparrow\uparrow}_{3 \uparrow\uparrow\uparrow\uparrow 3} 3</math>
| |
| * Greagolthrexisuplex, E100##(E100#100#100#2)
| |
| * Tritetplex, {4, 3, 1, 2}
| |
| * Zertrearmix, [0]↤[0]↤[3]
| |
| * <nowiki>Geegotri, {10, 10, {10, 100, 4}}</nowiki>
| |
| * Great gigangol / Gigangolsuplex, E100##4#2
| |
| * Tripentplex, {5, 3, 1, 2}
| |
| * <nowiki>Gigotri, {10, 10, {10, 100, 5}}</nowiki>
| |
| * Great gorgegol / Gorgegolsuplex, E100##5#2
| |
| * Trihexplex, {6, 3, 1, 2}
| |
| * <nowiki>Goggotri, {10, 10, {10, 100, 6}}</nowiki>
| |
| * Great gulgol / Gulgolsuplex, E100##6#2
| |
| * Triheptplex, {7, 3, 1, 2}
| |
| * <nowiki>Gagotri, {10, 10, {10, 100, 7}}</nowiki>
| |
| * Great gaspgol / Gaspgolsuplex, E100##7#2
| |
| * Trioctplex, {8, 3, 1, 2}
| |
| * Great ginorgol / Ginorgolsuplex, E100##8#2
| |
| * Triennplex, {9, 3, 1, 2}
| |
| * Great gargantuul / Gargantuulsuplex, E100##9#2
| |
| * Tridecalplex, {10,10,tridecal}
| |
| * Great googondol / Googondolsuplex, E100##10#2
| |
| * Little Graham grahal, [2,3,12,2] = F<sup>2</sup>(12)
| |
| * Grand Hyperhypillion, H*<sub>2</sub>(10,2)
| |
| * Primitolplex, s(3,3,2,2)
| |
| * Magthree, A(A(61,61),A(61,61))
| |
| * Double Centifact, 100**
| |
| * <nowiki>Boogolplex, {10,10,{10,10,100}}</nowiki>
| |
| * <nowiki>Gamminol, {12,100,{10,10,100}}</nowiki>
| |
| * TriGraham, g<sub>3</sub> = 3{3{3↑↑↑↑3}3}3
| |
| * Tris-hyperon, 100{X}100{X}100
| |
| * Gugolda-suplex / goolda-suplex, E100##100#2 = E100##gugold
| |
| * Kilohyperfaxul, (200![1])![1] ~ {10,198,hyperfaxul}
| |
| * Meser, 2[256[258]+2] = M(2,M(256,256))
| |
| * Charged Hayden, 999[999[999
| |
| * Gugolda-suplexichime, E1,000##1,000#2
| |
| * Myriodufact, 10,000**
| |
| * Gugolda-suplexitoll, E10,000##10,000#2
| |
| * Gugolda-suplexigong / goolda-suplexigong, E100,000##100,000#2
| |
| * Gongolplex, hyper(10,gongol,100)
| |
| * Joyce's pentatri, g(3,1,1,4,3,3)
| |
| * Googoldusuplex, E100##1#3
| |
| * Googoldusuplexigong, E100,000##1#3
| |
| * Googolplexidusuplex, E100##(E100#2)#2
| |
| * Googolduplexidusuplex, E100##(E100#3)#2
| |
| * Grangoldusuplex, E100##2#3
| |
| * Tritriplexian, {3,4,1,2}
| |
| * Grangoldexidusuplex, E100##(E100#100#2)#2
| |
| * Greagoldusuplex, E100##3#3
| |
| * Tritetduplex, {4, 4, 1, 2}
| |
| * Gigangoldusuplex, E100##4#3
| |
| * Gorgegoldusuplex, E100##5#3
| |
| * Bigrand Hyperhypillion, H*<sub>2</sub>(10,3)
| |
| * Joycian grand tridecal, g(3,1,1,11,10,10)
| |
| * Tridecalduplex, {10, 4, 1, 2}
| |
| * Googondoldusuplex, E100##10#3
| |
| * TriLittleGraham, [2,3,12,3] = F<sub>3</sub>(12)
| |
| * Primitolbiplex, s(3,4,2,2)
| |
| * Triple Centifact, 100***
| |
| * <nowiki>Boogolduplex, {10,10,{10,10,{10,10,100}}}</nowiki>
| |
| * Ter-hyperon, 100{X+1}4
| |
| * Gugolda-dusuplex / goolda-dusuplex, E100##100#3
| |
| * Megahyperfaxul, ((200![1])![1])![1] ~ {10,198,kilohyperfaxul}
| |
| * Muser, 2[2[256[258]+2]+2] = M(2,M(2,M(256,256)))
| |
| * Gugolda-dusuplexichime, E1,000##1,000#3
| |
| * Myriotrefact, 10,000***
| |
| * Gugolda-dusuplexitoll, E10,000##10,000#3
| |
| * Gugolda-dusuplexigong / goolda-dusuplexigong, E100,000##100,000#3
| |
| * Googoltrisuplex, E100##1#4
| |
| * Grangoltrisuplex, E100##2#4
| |
| * Mevenillion, 10<sup>3[3,3,3]*3+3</sup>
| |
| * ThaAwesome's Tetratri, 3[3,3]3
| |
| * Greagoltrisuplex, E100##3#4
| |
| * Golden grahal, g<sub>4</sub> = 3{3{3{3↑↑↑↑3}3}3}3
| |
| * Primitoltriplex, s(3,5,2,2)
| |
| * ThaAwesome's Tetratet, 4[4,4]4
| |
| * Golden crahal, [4,4,4,4] = gc(3)
| |
| * Tridecaltriplex, {10, 5, 1, 2}
| |
| * Little golden grahal, [2,3,12,4] = F<sup>4</sup>(12)
| |
| * Quadruple Centifact, 100****
| |
| * <nowiki>Boogoltriplex, {10,10,{10,10,{10,10,{10,10,100}}}}</nowiki>
| |
| * Gugolda-trisuplex, E100##100#4
| |
| * Juice infused Moser|Juice-infused Moser, 17[592[186[44[416
| |
| * Pen-hyperon, 100{X+1}5
| |
| * Gigahyperfaxul, (((200![1])![1])![1])![1] ~ {10,198,megahyperfaxul}
| |
| * Myrioterfact, 10,000****
| |
| * Primitolquadriplex, s(3,6,2,2)
| |
| * Gugolda-quadrisuplex, E100##100#5
| |
| * Quintuple Centifact, <math>100^* _5</math>
| |
| * Ex-hyperon, 100{X+1}6
| |
| * Terahyperfaxul, ((((200![1])![1])![1])![1])![1] ~ {10,198,gigahyperfaxul}
| |
| * Dihexar, <math>Q_{1,1}(6)</math>
| |
| * Epi-hyperon, 100{X+1}7
| |
| * Gugolda-quintisuplex, E100##100#6
| |
| * Petahyperfaxul, (((((200![1])![1])![1])![1])![1])![1] ~ {10,198,terahyperfaxul}
| |
| * '''Little Graham''' / Graham-Rothschild Number, F<sup>7</sup>(12), where F(n) = 2↑<sup>n</sup>3
| |
| * Gugolda-sextisuplex, E100##100#7
| |
| * Exahyperfaxul, ((((((200![1])![1])![1])![1])![1])![1])![1] ~ {10,198,petahyperfaxul}
| |
| * Gugolda-septisuplex, E100##100#8
| |
| * Dialogue-corporal, {10, 10, 1, 2}
| |
| * Uniance, 10[&1]
| |
| * Gugolda-octisuplex, E100##100#9
| |
| * Great grahal, [3,3,4,10] = G<sub>10</sub>
| |
| * Unaddom, <math>f_{\omega+1}(10)</math>
| |
| * One mow my, <math>g_{\Gamma_0}(10)</math>
| |
| * Great Hyperhypillion / Hypergrand Hyperhypillion, H* <sub>2</sub>(10,10)
| |
| * Gugolda-nonisuplex, E100##100#10
| |
| * Decuple Centifact, <math>100^* _{10}</math>
| |
| * Gugolda-decisuplex, E100##100#11
| |
| * Small fry-corporal, {10, 15, 1, 2}
| |
| * Quarter Graham, [3,3,4,16] = G<sub>16</sub>
| |
| * Great Exi-hyperhypillion, H* <sub>2</sub>(16,16)
| |
| * Guppy-corporal, {10, 20, 1, 2}
| |
| * Quinary-corporal, {5, 25, 1, 2}
| |
| * Joycian dimentri, g(27,1,1,4,3,3)
| |
| * Primibol, s(3,2,3,2)
| |
| * Half Graham, [3,3,4,32] = G<sub>32</sub>
| |
| * Mini-corporal, {10, 50, 1, 2}
| |
| * Octal-corporal, {8, 64, 1, 2}
| |
| * '''Graham's number''', G = g<sub>64</sub>
| |
| * Vsauce's Number, <math>g_{64}\times10^{10^{100}}!^{10^{10^{2\times10^{100}+100}}}</math>
| |
| * Bisuperiorgraham, G↑G
| |
| * Quadrisuperiorgraham, G↑↑5
| |
| * Graham-Conway number, {4,65,1,2}
| |
| * Prawn-corporal, {10, 65, 1, 2}
| |
| * Graham Jr., [2,3,12,64] = F<sup>64</sup>(12)
| |
| * Gugolda-tresexagintisuplex, E100##100#64
| |
| * xkcd number, A(G,G)
| |
| * Fyn, <u>1</u><sub>0</sub>(76)
| |
| * Ogocorporal, {10, 80, 1, 2}
| |
| * Corporalspeck, {10, 90, 1, 2}
| |
| * Corporalcrumb, {10, 95, 1, 2}
| |
| * Explodol, E(100)
| |
| * Corporalchunk, {10, 99, 1, 2}
| |
| * Corporal / Kil-Googol, {10,100,1,2} = 10[1,1]100
| |
| * Expandor / Cent-hyperon, 100{X+1}100
| |
| * Goourea / goolsol, s(10,100,2,2)
| |
| * Stasplex, g<sub>100</sub>
| |
| * Centuple Centifact, <math>100^* _{100}</math>
| |
| * Graatagold / graatagond / graatada, E100##100#100 = E100##100##2
| |
| * Astrex, #^* ((10))*100
| |
| * Great Cent-hyperhypillion, H* <sub>2</sub>(100,100)
| |
| * Wakoogol, <math>h_{100}(\underbrace{10,10,\cdots,10,10}_{\text{100 10's}})</math>
| |
| * ioannis.c|Output of ioannis.c, <math>\approx f_{\omega+1}(115)</math>
| |
| * Hexadecimal-corporal, {16, 256, 1, 2}
| |
| * Ungranika, <1,1> |488
| |
| * Corporalchime, {10, 1000, 1, 2}
| |
| * Graatagoldachime, E1,000##1,000#1,000
| |
| * Niftimal-corporal, {36, 1296, 1, 2}
| |
| * Pyrophord, g<sub>4707</sub>
| |
| * Corporaltoll, {10, 10000, 1, 2}
| |
| * Myriad Myriofact, <math>10000^* _{10000}</math>
| |
| * Graatagoldatoll, E10,000##10,000#10,000
| |
| * Joycian dulatri, g(19683,1,1,4,3,3)
| |
| * Corporalgong, {10, 100000, 1, 2}
| |
| * Graatagoldagong, E100,000##100,000#100,000 = E100,000##100,000##2
| |
| * Forcal, g<sub>1,000,000</sub>
| |
| * Graham forcal / Forahal, g<sub>1,000,001</sub>
| |
| * Graham graham forcal / Forado, g<sub>1,000,002</sub>
| |
| * Graham graham graham forcal / Foratrio, g<sub>1,000,003</sub>
| |
| * Borcal, g<sub>1,000,000,000</sub>
| |
| * Joycian trimentri, g(3<sup>27</sup>,1,1,4,3,3)
| |
| * Mevenogol, 10<sup>100</sup>[10<sup>100</sup>,10<sup>100</sup>,10<sup>100</sup>]
| |
| * Googolplux, g(g(3,2,g(2,50,100)),1,1,2,100,10)
| |
| * Googolsudexigong, E100,000##1#1#2
| |
| * Googolplexisudex, E100##100#(E100#2)
| |
| * Googolduplexisudex, E100##100#(E100#3)
| |
| * Clarkkkkson, ~ f<sub>ω+1</sub> (Lynz) (increases throughout time)
| |
|
| |
|
| === Part 6.2: <math>f_{\omega+1}(f_3(10))</math> ~ <math>f_{\omega+2}(f_3(10))</math> ===
| | 【[[Googolism - Part 5|更小]] | [[Googolism|主页]] | 更大】 |
| | |
| * Yudkowsky's Number (Saibian), G(G(1))
| |
| * Googolpluc, g(g(g(2,2,3),2,g(2,100,10)),1,1,2,100,10)
| |
| * Grand hyperfaxul, 200(![1])<sup>200![1]+1</sup> ~ {10,hyperfaxul,1,2}
| |
| * Lower bound of Block subsequence theorem|n(4)
| |
| * Joycian decaltrix, g(g(11,10,10),1,1,11,10,10)
| |
| * Googolplum, g(g(g(3,3,3),2,g(2,100,10)),1,1,2,100,10)
| |
| * Goltreantrex, #^* ((10))^((10))* * ((10))* ((10))*100
| |
| * Grangolsudex, E100##2#1#2
| |
| * Grangoldexisudex, E100##100#(E100#100#2)
| |
| * Tritridex, {3, 3, 2, 2}
| |
| * Grand kilohyperfaxul, 200(![1])<sup>(200![1])![1]+1</sup> ~ {10,kilohyperfaxul,1,2}
| |
| * Greagolsudex, E100##3#1#2
| |
| * Tritetdex, {4, 4, 2, 2}
| |
| * Grand megahyperfaxul, 200(![1])<sup>((200![1])![1])![1]+1</sup> ~ {10,megahyperfaxul,1,2}
| |
| * Gigangolsudex, E100##4#1#2
| |
| * Grand gigahyperfaxul, 200(![1])<sup>(((200![1])![1])![1])![1]+1</sup> ~ {10,gigahyperfaxul,1,2}
| |
| * Gorgegolsudex, E100##5#1#2
| |
| * Grand terahyperfaxul, 200(![1])<sup>((((200![1])![1])![1])![1])![1]+1</sup> ~ {10,terahyperfaxul,1,2}
| |
| * Grand petahyperfaxul, 200(![1])<sup>(((((200![1])![1])![1])![1])![1])![1]+1</sup> ~ {10,petahyperfaxul,1,2}
| |
| * Grand exahyperfaxul, 200(![1])<sup>((((((200![1])![1])![1])![1])![1])![1])![1]+1</sup> ~ {10,exahyperfaxul,1,2}
| |
| * '''Conway's Tetratri''' / primibolplex, 3→3→3→3 ~ g<sub>g<sub>27</sub></sub>
| |
| * Gugolda-sudex, E100##100#1#2
| |
| * Googolsuplexisudex, E100##1#2#2
| |
| * Grangolsuplexisudex, E100##2#2#2
| |
| * Kudi-Chan's Number, ~ g<sub>g<sub>64</sub>+64</sub>
| |
| * Gugolda-suplexisudex, E100##100#2#2
| |
| * Gugolda-dusuplexisudex, E100##100#3#2
| |
| * Gugolda-trisuplexisudex, E100##100#4#2
| |
| * Corporalplex, {10,{10,100,1,2},1,2}
| |
| * Tris-expandor, 100{X+1}100{X+1}100
| |
| * Graatagolda-sudex / graatada-sudex, E100##100#100#2
| |
| * Graatagolda-sudexichime, E1,000##1,000#1,000#2
| |
| * Graatagolda-sudexitoll, E10,000##10,000#10,000#2
| |
| * Graatagolda-sudexigong, E100,000##100,000#100,000#2
| |
| * Force forcal, Forcal(2)
| |
| * Wakoogolplex, <math>h_{100}(\underbrace{10,10,\cdots,10,10}_{\text{wakoogol 10's}})</math>
| |
| * Clarkkkksonplex, ~ f<sub>ω+1</sub>(f<sub>ω+1</sub>(Lynz)) (increases throughout time)
| |
| * Googoldusudex, E100##1#1#3
| |
| * Grangoldusudex, E100##2#1#3
| |
| * Gugolda-dusudex, E100##100#1#3
| |
| * Bigrand hyperfaxul, 200(![1])<sup>200(![1])<sup>200![1]+1</sup>+1</sup> ~ {10,grand hyperfaxul,1,2}
| |
| * Gugolda-suplexidusudex, E100##100#2#3
| |
| * Bigrand kilohyperfaxul, 200(![1])<sup>200(![1])<sup>(200![1])![1]+1</sup>+1</sup> ~ {10,grand kilohyperfaxul,1,2}
| |
| * Gugolda-dusuplexidusudex, E100##100#3#3
| |
| * Bigrand megahyperfaxul, 200(![1])<sup>200(![1])<sup>((200![1])![1])![1]+1</sup>+1</sup> ~ {10,grand megahyperfaxul,1,2}
| |
| * Graatagolda-dusudex / graatada-dusudex, E100##100#100#3
| |
| * Graatagolda-dusudexichime, E1,000##1,000#1,000#3
| |
| * Graatagolda-dusudexitoll, E10,000##10,000#10,000#3
| |
| * Graatagolda-dusudexigong, E100,000##100,000#100,000#3
| |
| * Force force forcal, Forcal(3)
| |
| * Googoltrisudex, E100##1#1#4
| |
| * Terto-Grahal, G(G(G(G(1))))
| |
| * Gugolda-trisudex, E100##100#1#4
| |
| * Trigrand hyperfaxul, 200(![1])<sup>200(![1])<sup>200(![1])<sup>200![1]+1</sup>+1</sup>+1</sup> ~ {10,bigrand hyperfaxul,1,2}
| |
| * Graatagolda-trisudex, E100##100#100#4
| |
| * Trigrand kilohyperfaxul, 200(![1])<sup>200(![1])<sup>200(![1])<sup>(200![1])![1]+1</sup>+1</sup>+1</sup> ~ {10,bigrand kilohyperfaxul,1,2}
| |
| * Trigrand megahyperfaxul, 200(![1])<sup>200(![1])<sup>200(![1])<sup>((200![1])![1])![1]+1</sup>+1</sup>+1</sup> ~ {10,bigrand megahyperfaxul,1,2}
| |
| * Force force force forcal, Forcal(4)
| |
| * Quadgrand hyperfaxul, 200(![1])<sup>200(![1])<sup>200(![1])<sup>200(![1])<sup>200![1]+1</sup>+1</sup>+1</sup>+1</sup> ~ {10,6,2,2}
| |
| * Graatagolda-quadrisudex, E100##100#100#5
| |
| * Quintgrand hyperfaxul, 200(![1])<sup>200(![1])<sup>200(![1])<sup>200(![1])<sup>200(![1])<sup>200![1]+1</sup>+1</sup>+1</sup>+1</sup>+1</sup> ~ {10,7,2,2}
| |
| * Trihexar, <math>Q_{1,2}(6)</math>
| |
| * Graatagolda-quintisudex, E100##100#100#6
| |
| * Graatagolda-sextisudex, E100##100#100#7
| |
| * Graatagolda-septisudex, E100##100#100#8
| |
| * Biance, 10[&2]
| |
| * Multiexpandecal, {10,10,2,2} = {10,2,3,2}
| |
| * Baddom, <math>f_{\omega+2}(10)</math>
| |
| * Graatagolda-octisudex, E100##100#100#9
| |
| * Graatagolda-nonisudex, E100##100#100#10
| |
| * Graatagolda-decisudex, E100##100#100#11
| |
| * Primitrol, s(3,2,4,2)
| |
| * Unfyn, <u>1</u><sub>1</sub>(76)
| |
| * Mulporal / Kil-Doogol, {10,100,2,2} = 10[2,1]100
| |
| * Hypercentifact, <math>100^* _{(100,100)}</math>
| |
| * Greegold / greegond / greegada, E100##100#100#100 = E100##100##3
| |
| * Degranika, <2,1> |488
| |
| * Greegoldachime, E1,000##1,000#1,000#1,000
| |
| * Greegoldatoll, E10,000##10,000#10,000#10,000
| |
| * Greegoldagong, E100,000##100,000#100,000#100,000 = E100,000##100,000##3
| |
| * Suporcal, Forcal(1,000,000) = Forcal<sub>2</sub>(1)
| |
| * Force suporcal, Forcal(1,000,001)
| |
| * Force force suporcal, Forcal(1,000,002)
| |
| * Force force force suporcal, Forcal(1,000,003)
| |
| * Googolsuthrex, E100##1#1#1#2
| |
| | |
| === Part 6.3: <math>f_{\omega+2}(f_3(10))</math> ~ <math>f_{\omega+5}(f_3(10))</math> ===
| |
| | |
| * Hypergraham, G<sup>Graham's number|G</sup>(64)
| |
| * Grangolsuthrex, E100##2#1#1#2
| |
| * Greagolsuthrex, E100##3#1#1#2
| |
| * Gigangolsuthrex, E100##4#1#1#2
| |
| * Gorgegolsuthrex, E100##5#1#1#2
| |
| * Googondolsuthrex, E100##10#1#1#2
| |
| * Gugolda-suthrex, E100##100#1#1#2
| |
| * Googolsuplexisuthrex, E100##1#2#1#2
| |
| * Gugolda-suplexisuthrex, E100##100#2#1#2
| |
| * Gugolda-dusuplexisuthrex, E100##100#3#1#2
| |
| * Graatagolda-suthrex, E100##100#100#1#2
| |
| * Googolsudexisuthrex, E100##1#1#2#2
| |
| * Gugolda-sudexisuthrex, E100##100#1#2#2
| |
| * Grand tritri, {3,3,3,2} = 3[3,1]3
| |
| * Primitrolplex, s(3,3,4,2)
| |
| * Graatagolda-sudexisuthrex, E100##100#100#2#2
| |
| * Graatagolda-dusudexisuthrex, E100##100#100#3#2
| |
| * Greegolda-suthrex / greegada-suthrex, E100##100#100#100#2
| |
| * Greegolda-suthrexichime, E1,000##1,000#1,000#1,000#2
| |
| * Greegolda-suthrexitoll, E10,000##10,000#10,000#10,000#2
| |
| * Greegolda-suthrexigong, E100,000##100,000#100,000#100,000#2
| |
| * Superior suporcal, Forcal<sub>2</sub>(2)
| |
| * Descendpent, {5, 4, 3, 2}
| |
| * '''Conway's Tetratet''', 4→4→4→4 = CG(4)
| |
| * Greegolda-dusuthrex, E100##100#100#100#3
| |
| * Greegolda-dusuthrexichime, E1,000##1,000#1,000#1,000#3
| |
| * Greegolda-dusuthrexitoll, E10,000##10,000#10,000#10,000#3
| |
| * Greegolda-dusuthrexigong, E100,000##100,000#100,000#100,000#3
| |
| * Superior superior suporcal, Forcal<sub>2</sub>(3)
| |
| * Superior superior superior suporcal, Forcal<sub>2</sub>(4)
| |
| * Quadhexar, <math>Q_{1,3}(6)</math>
| |
| * Triance, 10[&3]
| |
| * Traddom, <math>f_{\omega+3}(10)</math>
| |
| * Primitetol, s(3,2,5,2)
| |
| * Deufyn, <u>1</u><sub>2</sub>(76)
| |
| * Powporal / Kil-Toogol, {10,100,3,2} = 10[3,1]100
| |
| * Grinningold / grinningond / grinninda, E100##100#100#100#100 = E100##100##4
| |
| * Hectpeta-melpentis, 100[100#5]
| |
| * Treastrex, #^* * * ((10))*100
| |
| * Tregranika, <3,1>|488
| |
| * Grinningoldachime, E1,000##1,000#1,000#1,000#1,000
| |
| * Grinningoldatoll, E10,000##10,000#10,000#10,000#10,000
| |
| * Grinningoldagong, E100,000##100,000#100,000#100,000#100,000 = E100,000##100,000##4
| |
| * Megocal, Forcal<sub>2</sub>(1,000,000) = Forcal<sub>3</sub>(1)
| |
| * Force megocal, Forcal(1+Forcal<sub>2</sub>(999,999))
| |
| * Superior megocal, Forcal<sub>2</sub>(1,000,001)
| |
| * Superior superior megocal, Forcal<sub>2</sub>(1,000,002)
| |
| * Primitetolplex, s(3,3,5,2)
| |
| * Grinningolda-sutetrex / grinninda-sutetrex, E100##100#100#100#100#2
| |
| * Grinningolda-sutetrexichime, E1,000##1,000#1,000#1,000#1,000#2
| |
| * Grinningolda-sutetrexitoll, E10,000##10,000#10,000#10,000#10,000#2
| |
| * Grinningolda-sutetrexigong, E100,000##100,000#100,000#100,000#100,000#2
| |
| * Megaior megocal, Forcal<sub>3</sub>(2)
| |
| * Grinningolda-dusutetrex / grinninda-dusutetrex, E100##100#100#100#100#3
| |
| * Grinningolda-dusutetrexichime, E1,000##1,000#1,000#1,000#1,000#3
| |
| * Grinningolda-dusutetrexitoll, E10,000##10,000#10,000#10,000#10,000#3
| |
| * Grinningolda-dusutetrexigong, E100,000##100,000#100,000#100,000#100,000#3
| |
| * Grand tritet, {4,4,4,2}
| |
| * Megaior megaior megocal, Forcal<sub>3</sub>(3)
| |
| * Megaior megaior megaior megocal, Forcal<sub>3</sub>(4)
| |
| * Quinhexar, <math>Q_{1,4}(6)</math>
| |
| * Genesis / Tetriance, 10[&4]
| |
| * Quadraddom, <math>f_{\omega+4}(10)</math>
| |
| * Primipenol, s(3,2,6,2)
| |
| * Troifyn, <u>1</u><sub>3</sub>(76)
| |
| * Terporal / Kil-Tetoogol, {10,100,4,2} = 10[4,1]100
| |
| * Hecthexa-melhexis, 100[100#6]
| |
| * Golaagold / golaagond / golaada, E100##100##5
| |
| * Golaagoldachime, E1,000##1,000##5
| |
| * Golaagoldatoll, E10,000##10,000##5
| |
| * Golaagoldagong, E100,000##100,000##5
| |
| * Hypercal, Forcal<sub>4</sub>(1)
| |
| * Force hypercal, Forcal(1+Forcal<sub>2</sub>(Forcal<sub>3</sub>(999,999)-1))
| |
| * Superior hypercal, Forcal<sub>2</sub>(1+Forcal<sub>3</sub>(999,999))
| |
| * Megaior hypercal, Forcal<sub>3</sub>(1,000,001)
| |
| * Primipenolplex, s(3,3,6,2)
| |
| * Golaagolda-supentex / golaada-supentex, E100##100#100#100#100#100#2
| |
| * Golaagolda-supentexichime, E1,000##1,000#1,000#1,000#1,000#1,000#2
| |
| * Golaagolda-supentexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#2
| |
| * Golaagolda-supentexigong, E100,000##100,000#100,000#100,000#100,000#100,000#2
| |
| * Hyperior hypercal, Forcal<sub>4</sub>(2)
| |
| * Golaagolda-dusupentex / golaada-dusupentex, E100##100#100#100#100#100#3
| |
| * Golaagolda-dusupentexichime, E1,000##1,000#1,000#1,000#1,000#1,000#3
| |
| * Golaagolda-dusupentexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#3
| |
| * Golaagolda-dusupentexigong, E100,000##100,000#100,000#100,000#100,000#100,000#3
| |
| * Hyperior hyperior hypercal, Forcal<sub>4</sub>(3)
| |
| * Grand tripent, {5,5,5,2}
| |
| * Hyperior hyperior hyperior hypercal, Forcal<sub>4</sub>(4)
| |
| * Sexahexar, <math>Q_{1,5}(6)</math>
| |
| * Pentiance, 10[&5]
| |
| * Quintaddom, <math>f_{\omega+5}(10)</math>
| |
| * Pepporal, {10,100,5,2}
| |
| * Hecthepta-melheptis, 100[100#7]
| |
| * Gruelohgold / gruelohgond / gruelohda, E100##100##6
| |
| * Gruelohgoldachime, E1,000##1,000##6
| |
| * Gruelohgoldatoll, E10,000##10,000##6
| |
| * Gruelohgoldagong, E100,000##100,000##6
| |
| * Gorgcal, Forcal<sub>5</sub>(1)
| |
| * Force gorgcal, Forcal(1+Forcal<sub>2</sub>(Forcal<sub>3</sub>(Forcal<sub>4</sub>(999,999)-1)-1))
| |
| * Superior gorgcal, Forcal<sub>2</sub>(1+Forcal<sub>3</sub>(Forcal<sub>4</sub>(999,999)-1))
| |
| * Megaior gorgcal, Forcal<sub>3</sub>(1+Forcal<sub>4</sub>(999,999))
| |
| * Hyperior gorgcal, Forcal<sub>4</sub>(1,000,001)
| |
| | |
| === Part 6.4: <math>f_{\omega+5}(f_3(10))</math> ~ <math>f_{\omega+11}(10)</math> ===
| |
| | |
| * Gruelohgolda-suhex, E100##100#100#100#100#100#100#2
| |
| * Gruelohgolda-suhexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#2
| |
| * Gruelohgolda-suhexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#2
| |
| * Gruelohgolda-suhexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#2
| |
| * Gorgcaior gorgcal, Forcal<sub>5</sub>(2)
| |
| * Gruelohgolda-dusuhex, E100##100#100#100#100#100#100#3
| |
| * Gruelohgolda-dusuhexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#3
| |
| * Gruelohgolda-dusuhexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#3
| |
| * Gruelohgolda-dusuhexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#3
| |
| * Gorgcaior gorgcaior gorgcal, Forcal<sub>5</sub>(3)
| |
| * Gorgcaior gorgcaior gorgcaior gorgcal, Forcal<sub>5</sub>(4)
| |
| * Septahexar, <math>Q_{2,0}(6)</math>
| |
| * Sextaddom, <math>f_{\omega+6}(10)</math>
| |
| * Hectocta-meloctis, 100[100#8]
| |
| * Gaspgold / gaspgond, E100##100##7
| |
| * Havering, 112![7]
| |
| * Gaspgoldachime, E1,000##1,000##7
| |
| * Gaspgoldatoll, E10,000##10,000##7
| |
| * Gaspgoldagong, E100,000##100,000##7
| |
| * Gulfcal, Forcal<sub>6</sub>(1)
| |
| * Gaspgolda-suheptex, E100##100#100#100#100#100#100#100#2
| |
| * Gaspgolda-suheptexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#2
| |
| * Gaspgolda-suheptexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#2
| |
| * Gaspgolda-suheptexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#2
| |
| * Gulfcaior gulfcal, Forcal<sub>6</sub>(2)
| |
| * Gaspgolda-dusuheptex, E100##100#100#100#100#100#100#100#3
| |
| * Gaspgolda-dusuheptexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#3
| |
| * Gaspgolda-dusuheptexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#3
| |
| * Gaspgolda-dusuheptexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#3
| |
| * Gulfcaior gulfcaior gulfcal, Forcal<sub>6</sub>(3)
| |
| * Gulfcaior gulfcaior gulfcaior gulfcal, Forcal<sub>6</sub>(4)
| |
| * Septaddom, <math>f_{\omega+7}(10)</math>
| |
| * Heptporal, {10,100,7,2}
| |
| * Hectenna-melenna. 100[100#9]
| |
| * Ginorgold / ginorgond, E100##100##8
| |
| * Ginorgoldachime, E1,000##1,000##8
| |
| * Ginorgoldatoll, E10,000##10,000##8
| |
| * Ginorgoldagong, E100,000##100,000##8
| |
| * Gaspocal, Forcal<sub>7</sub>(1)
| |
| * Ginorgolda-suoctex, E100##100#100#100#100#100#100#100#100#2
| |
| * Ginorgolda-suoctexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#2
| |
| * Ginorgolda-suoctexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#2
| |
| * Ginorgolda-suoctexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#2
| |
| * Gaspocaior gaspocal, Forcal<sub>7</sub>(2)
| |
| * Ginorgolda-dusuoctex, E100##100#100#100#100#100#100#100#100#3
| |
| * Ginorgolda-dusuoctexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#3
| |
| * Ginorgolda-dusuoctexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#3
| |
| * Ginorgolda-dusuoctexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#3
| |
| * Gaspocaior gaspocaior gaspocal, Forcal<sub>7</sub>(3)
| |
| * Gaspocaior gaspocaior gaspocaior gaspocal, Forcal<sub>7</sub>(4)
| |
| * Octaddom, <math>f_{\omega+8}(10)</math>
| |
| * Octporal, {10,100,8,2}
| |
| * Decazhel, 10[10#10]
| |
| * Hectdeka-meldeka, 100[100#10]
| |
| * Gargantuuld / gargantuund, E100##100##9
| |
| * Gargantuuldachime, E1,000##1,000##9
| |
| * Gargantuuldatoll, E10,000##10,000##9
| |
| * Gargantuuldagong, E100,000##100,000##9
| |
| * Ginorcal, Forcal<sub>8</sub>(1)
| |
| * Gargantuulda-suennex, E100##100#100#100#100#100#100#100#100#100#2
| |
| * Gargantuulda-suennexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#2
| |
| * Gargantuulda-suennexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#2
| |
| * Gargantuulda-suennexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#2
| |
| * Ginorcaior ginorcal, Forcal<sub>8</sub>(2)
| |
| * Gargantuulda-dusuennex, E100##100#100#100#100#100#100#100#100#100#3
| |
| * Gargantuulda-dusuennexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#3
| |
| * Gargantuulda-dusuennexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#3
| |
| * Gargantuulda-dusuennexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#2
| |
| * Ginorcaior ginorcaior ginorcal, Forcal<sub>8</sub>(3)
| |
| * Ginorcaior ginorcaior ginorcaior ginorcal, Forcal<sub>8</sub>(4)
| |
| * Nonaddom, <math>f_{\omega+9}(10)</math>
| |
| * Ennporal, {10,100,9,2}
| |
| * Googondold / googondond, E100##100##10
| |
| * Googondoldachime, E1,000##1,000##10
| |
| * Googondoldatoll, E10,000##10,000##10
| |
| * Googondoldagong, E100,000##100,000##10
| |
| * Googondolda-sudecex, E100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Googondolda-sudecexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#2
| |
| * Googondolda-sudecexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#2
| |
| * Googondolda-sudecexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#2
| |
| * Googondolda-dusudecex, E100##100#100#100#100#100#100#100#100#100#100#3
| |
| * Googondolda-dusudecexichime, E1,000##1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#1,000#3
| |
| * Googondolda-dusudecexitoll, E10,000##10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#10,000#3
| |
| * Googondolda-dusudecexigong, E100,000##100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#100,000#3
| |
| * Grand tridecal, {10,10,10,2}
| |
| * Iterais, 10[&10] = 10[&&]
| |
| * Dekaddom / bultom, <math>f_{\omega+10}(10)</math>
| |
| * Decporal, {10,100,10,2}
| |
| * Googoadold, E100##100##11
| |
| * <nowiki>Solution, {{{{{42, 42, 1, 2}, 2, 2}, 3, 2}, 5, 2}, 10, 2}</nowiki>
| |
| | |
| === Part 6.5: <math>f_{\omega+11}(10)</math> ~ <math>f_{\omega2}(f_3(10))</math> ===
| |
| | |
| * Ununaddom, <math>f_{\omega+11}(10)</math>
| |
| * Goograndold, E100##100##12
| |
| * Bunaddom, <math>f_{\omega+12}(10)</math>
| |
| * Grand dozenal, {12,12,12,2}
| |
| * Googreadold, E100##100##13
| |
| * Trunaddom, <math>f_{\omega+13}(10)</math>
| |
| * Googigandold, E100##100##14
| |
| * Quadrunaddom, <math>f_{\omega+14}(10)</math>
| |
| * Googorgedold, E100##100##15
| |
| * Quintunaddom, <math>f_{\omega+15}(10)</math>
| |
| * Googuldold, E100##100##16
| |
| * Sextunaddom, <math>f_{\omega+16}(10)</math>
| |
| * Googaspdold, E100##100##17
| |
| * Septunaddom, <math>f_{\omega+17}(10)</math>
| |
| * Googinordold, E100##100##18
| |
| * Octunaddom, <math>f_{\omega+18}(10)</math>
| |
| * Googargantuuld, E100##100##19
| |
| * Nonunaddom, <math>f_{\omega+19}(10)</math>
| |
| * Googonkosold, E100##100##20
| |
| * Vigaddom / zeribaddom, <math>f_{\omega+20}(10)</math>
| |
| * Unibaddom, <math>f_{\omega+21}(10)</math>
| |
| * Bibaddom, <math>f_{\omega+22}(10)</math>
| |
| * Tribaddom, <math>f_{\omega+23}(10)</math>
| |
| * Quadribaddom, <math>f_{\omega+24}(10)</math>
| |
| * Quintibaddom, <math>f_{\omega+25}(10)</math>
| |
| * Sextibaddom, <math>f_{\omega+26}(10)</math>
| |
| * Septibaddom, <math>f_{\omega+27}(10)</math>
| |
| * Octibaddom, <math>f_{\omega+28}(10)</math>
| |
| * Nonibaddom, <math>f_{\omega+29}(10)</math>
| |
| * Googontritold, E100##100##30
| |
| * Googonsartold, E100##100##40
| |
| * Chan.c numbers|chan-2.c, <math>\approx f_{\omega+48}(2)</math>
| |
| * Googonpetold, E100##100##50
| |
| * Googonextold, E100##100##60
| |
| * Googoneptold, E100##100##70
| |
| * Bi-Fyn, <u>2</u><sub>0</sub>(76)
| |
| * Googonogdold, E100##100##80
| |
| * Biggolspeck, {10,10,90,2}
| |
| * Googonentold, E100##100##90
| |
| * Biggolcrumb, {10,10,95,2}
| |
| * Biggolchunk, {10,10,99,2}
| |
| * Ternary-biggol, {3,3,100,2}
| |
| * Quarternary-biggol, {4,4,100,2}
| |
| * Quinary-biggol, {5,5,100,2}
| |
| * Octal-biggol / biggolbyte, {8,8,100,2}
| |
| * Gugolthra / gugonthra / googonhectold / goolthra, E100##100##100
| |
| * Biggol / Dukiloogol, {10,10,100,2} = 10[0,2]100
| |
| * Hektaddom, <math>f_{\omega+100}(10)</math>
| |
| * Dozenal-biggol / duodecimal-biggol, {12,12,100,2}
| |
| * Hexadecimal-biggol, {16,16,100,2}
| |
| * Grand trihectal, {100,100,100,2}
| |
| * Giaxul, 200![200] = 200![1,2] ~ {10,10,199,2}
| |
| * Kilogiaxul, (200![200])![200] ~ {10,3,200,2}
| |
| * Megagiaxul, ((200![200])![200])![200] ~ {10,4,200,2}
| |
| * Gigagiaxul, (((200![200])![200])![200])![200] ~ {10,5,200,2}
| |
| * Teragiaxul, ((((200![200])![200])![200])![200])![200] ~ {10,6,200,2}
| |
| * Petagiaxul, (((((200![200])![200])![200])![200])![200])![200] ~ {10,7,200,2}
| |
| * Exagiaxul, ((((((200![200])![200])![200])![200])![200])![200])![200] ~ {10,8,200,2}
| |
| * Ultron, <math>\approx f_{\omega+200}(100)</math>
| |
| * Grand Giaxul, 200(![200])<sup>200![200]+1</sup> ~ {10,giaxul,200,2}
| |
| * Grand Kilogiaxul, 200(![200])<sup>(200![200])![200]+1</sup> ~ {10,kilogiaxul,200,2}
| |
| * Grand Megagiaxul, 200(![200])<sup>((200![200])![200])![200]+1</sup>
| |
| * Grand Gigagiaxul, 200(![200])<sup>(((200![200])![200])![200])![200]+1</sup>
| |
| * Grand Teragiaxul, 200(![200])<sup>((((200![200])![200])![200])![200])![200]+1</sup>
| |
| * Grand Petagiaxul, 200(![200])<sup>(((((200![200])![200])![200])![200])![200])![200]+1</sup>
| |
| * Grand Exagiaxul, 200(![200])<sup>((((((200![200])![200])![200])![200])![200])![200])![200]+1</sup>
| |
| * Bigrand Giaxul, 200(![200])<sup>200(![200])<sup>200![200]+1</sup>+1</sup> ~ {10,Grand Giaxul,200,2}
| |
| * Bigrand Kilogiaxul, 200(![200])<sup>200(![200])<sup>(200![200])![200]+1</sup>+1</sup>
| |
| * Bigrand Megagiaxul, 200(![200])<sup>200(![200])<sup>((200![200])![200])![200]+1</sup>+1</sup>
| |
| * Trigrand Giaxul, 200(![200])<sup>200(![200])<sup>200(![200])<sup>200![200]+1</sup>+1</sup>+1</sup> ~ {10,4,201,2}
| |
| * Trigrand Kilogiaxul, 200(![200])<sup>200(![200])<sup>200(![200])<sup>(200![200])![200]+1</sup>+1</sup>+1</sup>
| |
| * Trigrand Megagiaxul, 200(![200])<sup>200(![200])<sup>200(![200])<sup>((200![200])![200])![200]+1</sup>+1</sup>+1</sup>
| |
| * Quadgrand Giaxul, 200(![200])<sup>200(![200])<sup>200(![200])<sup>200(![200])<sup>200![200]+1</sup>+1</sup>+1</sup>+1</sup> ~ {10,5,201,2}
| |
| * Quintgrand Giaxul, 200(![200])<sup>200(![200])<sup>200(![200])<sup>200(![200])<sup>200(![200])<sup>200![200]+1</sup>+1</sup>+1</sup>+1</sup>+1</sup> ~ {10,6,201,2}
| |
| * Bigranika, <0,2> |488
| |
| * Bwiggol / biggolchime, {10,10,1000,2}
| |
| * Kiladdom, <math>f_{\omega+1000}(10)</math>
| |
| * Biggoltoll, {10,10,10000,2}
| |
| * Skibidi toilet grimace ohio, <math>f_{\omega 2}(69420)</math>
| |
| * Biggolgong, {10,10,100000,2}
| |
| * Megaddom, <math>f_{\omega+1000000}(10)</math>
| |
| * Terribocal, Forcal<sub>1000000</sub>(1) = Forcal<sub>1,2</sub>(1)
| |
| * Biggolbong, {10,10,100000000,2}
| |
| * Gigaddom, <math>f_{\omega+10^9}(10)</math>
| |
| * Biggolthrong, {10,10,{10,11},2}
| |
| * Teraddom, <math>f_{\omega+10^{12}}(10)</math>
| |
| * Petaddom, <math>f_{\omega+10^{15}}(10)</math>
| |
| * Exaddom, <math>f_{\omega+10^{18}}(10)</math>
| |
| * Zettaddom, <math>f_{\omega+10^{21}}(10)</math>
| |
| * Yottaddom, <math>f_{\omega+10^{24}}(10)</math>
| |
| * Googolplexitris, E100##100##(E100)
| |
| * Googolplexplexitris, E100##100##(E100#2)
| |
| | |
| === Part 6.6: <math>f_{\omega2}(f_3(10))</math> ~ <math>f_{\omega3}(f_3(10))</math> ===
| |
| | |
| * Duprimitol, s(3,2,2,3)
| |
| * Grangolplexitris, E100##100##(E100#100)
| |
| * Greagolplexitris, E100##100##(E100#100#100)
| |
| * Gigangolplexitris, E100##100##(E100#100#100#100)
| |
| * Great gugold / Gugolda-plexitris, E100##100##1#2
| |
| * Great graatagold, E100##100##2#2
| |
| * Great greegold, E100##100##3#2
| |
| * Grand tritriplex, {3,3,1,3}
| |
| * Great grinningold, E100##100##4#2
| |
| * Great golaagold, E100##100##5#2
| |
| * Great gruelohgold, E100##100##6#2
| |
| * Great gaspgold, E100##100##7#2
| |
| * Great ginorgold, E100##100##8#2
| |
| * Great gargantuuld, E100##100##9#2
| |
| * Great googondold, E100##100##10#2
| |
| * Gugolthra-plexitris, E100##100##100#2
| |
| * Biggolplex, {10,10,{10,10,100,2},2}
| |
| * Ultronplex, <math>\approx f_{\omega2}(f_{\omega+200}(100))</math>
| |
| * Terribocaior Terribocal, Forcal<sub>Terribocal</sub>(1) = Forcal<sub>1,2</sub>(2)
| |
| * Duprimitolplex, s(3,3,2,3)
| |
| * Gugolthra-duplexitris, E100##100##100#3
| |
| * Biggolduplex, {10,10,{10,10,{10,10,100,2},2},2}
| |
| * Gugolthra-triplexitris, E100##100##100#4
| |
| * Unadd-bultom, <math>f_{\omega2+1}(10)</math>
| |
| * Bi-Unfyn, <u>2</u><sub>1</sub>(76)
| |
| * Dukil-Googol / corplodal, 10[1,2]100 = {10,100,1,3}
| |
| * Graatagolthra / graatathra, E100##100##100##2
| |
| * Terribuporcal, Forcal<sub>2,2</sub>(1)
| |
| * Wonkapoogol, <math>h_x(h,\underbrace{10,10,\cdots,10,10}_{\text{100 10's}})(100)</math>
| |
| * Duprimibol, s(3,2,3,3)
| |
| * Graatagolthra-dexitris, E100##100##100#100#2
| |
| * Terribuperior Terribuporcal, Forcal<sub>2,2</sub>(2)
| |
| * Wonkapoogolplex, <math>h_x(h,\underbrace{10,10,\cdots,10,10}_{\text{wonkapoogol 10's}})(100)</math>
| |
| * Tetentri / duprimibolplex, s(3,3,3,3)
| |
| * Graatagolthra-dudexitris, E100##100##100#100#3
| |
| * Graatagolthra-tridexitris, E100##100##100#100#4
| |
| * Badd-bultom, <math>f_{\omega2+2}(10)</math>
| |
| * Bi-Deufyn, <u>2</u><sub>2</sub>(76)
| |
| * Dukil-Doogol / mulplodal, 10[2,2]100 = {10,100,2,3}
| |
| * Greegolthra / greegathra, E100##100##100##3
| |
| * Terribegocal, Forcal<sub>3,2</sub>(1)
| |
| * Tetratri, {3,3,3,3}
| |
| * Greegolthra-threxitris, E100##100##100#100#100#2
| |
| * Greegolthra-duthrexitris, E100##100##100#100#100#3
| |
| * Greegolthra-trithrexitris, E100##100##100#100#100#4
| |
| * Tradd-bultom, <math>f_{\omega2+3}(10)</math>
| |
| * Bi-Troifyn, <u>2</u><sub>3</sub>(76)
| |
| * Powplodal, {10,100,3,3}
| |
| * Grinningolthra / grinninthra, E100##100##100##4
| |
| * Terribypercal, Forcal<sub>4,2</sub>(1)
| |
| * Grinningolthra-tetrexitris, E100##100##100#100#100#100#2
| |
| * Grinningolthra-dutetrexitris, E100##100##100#100#100#100#3
| |
| * Grinningolthra-tritetrexitris, E100##100##100#100#100#100#4
| |
| * Terplodal, {10,100,4,3}
| |
| * Kirby-Paris hydra|Hydra(4) (lower bound), <math>> f_{\omega2+4}(5)</math>
| |
| * Hecta-pepto-hypermel, 100[100#####100]
| |
| * Golaagolthra / golaathra, E100##100##100##5
| |
| * Chan.c numbers|chan-3.c, <math>\approx f_{\omega2+4}(9998)</math>
| |
| * Terriborgecal, Forcal<sub>5,2</sub>(1)
| |
| * Golaagolthra-pentexitris, E100##100##100#100#100#100#100#2
| |
| * Golaagolthra-dupentexitris, E100##100##100#100#100#100#100#3
| |
| * Golaagolthra-tripentexitris, E100##100##100#100#100#100#100#4
| |
| * Pentplodal, {10,100,5,3}
| |
| * Gruelohgolthra / gruelohthra, E100##100##100##6
| |
| * Terribulfcal, Forcal<sub>6,2</sub>(1)
| |
| * Gruelohgolthra-hexitris, E100##100##100#100#100#100#100#100#2
| |
| * Gruelohgolthra-duhexitris, E100##100##100#100#100#100#100#100#3
| |
| * Gruelohgolthra-trihexitris, E100##100##100#100#100#100#100#100#4
| |
| * Septasexahexar, <math>Q_{3,0}(6)</math>
| |
| * Gaspgolthra, E100##100##100##7
| |
| * Terribaspcal, Forcal<sub>7,2</sub>(1)
| |
| * Gaspgolthra-heptexitris, E100##100##100#100#100#100#100#100#100#2
| |
| * Gaspgolthra-duheptexitris, E100##100##100#100#100#100#100#100#100#3
| |
| * Gaspgolthra-triheptexitris, E100##100##100#100#100#100#100#100#100#4
| |
| * Ginorgolthra, E100##100##100##8
| |
| * Terribinorcal, Forcal<sub>8,2</sub>(1)
| |
| * Ginorgolthra-octexitris, E100##100##100#100#100#100#100#100#100#100#2
| |
| * Ginorgolthra-duoctexitris, E100##100##100#100#100#100#100#100#100#100#3
| |
| * Ginorgolthra-trioctexitris, E100##100##100#100#100#100#100#100#100#100#4
| |
| * Gargantuulthra, E100##100##100##9
| |
| * Gargantuulthra-ennexitris, E100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Gargantuulthra-duennexitris, E100##100##100#100#100#100#100#100#100#100#100#3
| |
| * Gargantuulthra-triennexitris, E100##100##100#100#100#100#100#100#100#100#100#4
| |
| * Hecta-dekato-hypermel, 100[100##########100]
| |
| * Googondolthra, E100##100##100##10
| |
| * Googondolthra-decexitris, E100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Googondolthra-dudecexitris, E100##100##100#100#100#100#100#100#100#100#100#100#3
| |
| * Googondolthra-tridecexitris, E100##100##100#100#100#100#100#100#100#100#100#100#4
| |
| * Great tridecal, {10,10,10,3}
| |
| * Iteraduis, 10[&&10] = 10[&&&]
| |
| * Trultom / dekadd-bultom, <math>f_{\omega3}(10)</math>
| |
| * Googonkosolthra, E100##100##100##20
| |
| * Googontritolthra, E100##100##100##30
| |
| * Googonsartolthra, E100##100##100##40
| |
| * Googonpetolthra, E100##100##100##50
| |
| * Googonextolthra, E100##100##100##60
| |
| * Googoneptolthra, E100##100##100##70
| |
| * Tri-Fyn, <u>3</u><sub>0</sub>(76)
| |
| * Googonogdolthra, E100##100##100##80
| |
| * Googonentolthra, E100##100##100##90
| |
| * Gugoltesla / gugontesla / googonhectolthra / gooltesla, E100##100##100##100
| |
| * Baggol / Trukiloogol, {10,10,100,3} = 10[0,3]100
| |
| * Tri-astragold, #^^^((10))*100
| |
| * Juice infused Chain Arrows, <math>17 \rightarrow 592 \rightarrow 186 \rightarrow 44 \rightarrow 416</math>
| |
| * Trigranika, <0,3> |488
| |
| * Bwaggol, {10,10,1000,3}
| |
| * Baggoltoll, {10,10,10000,3}
| |
| * Baggolgong, {10,10,100000,3}
| |
| * Tribocal, Forcal<sub>1000000,2</sub>(1) = Forcal<sub>1,3</sub>(1)
| |
| | |
| === Part 6.7: <math>f_{\omega3}(f_3(10))</math> ~ <math>f_{\omega5}(f_3(10))</math> ===
| |
| | |
| * Truprimitol, s(3,2,2,4)
| |
| * Gugoltesla-plexitetris, E100##100##100##100#2
| |
| * Baggolplex, {10,10,{10,10,100,3},3}
| |
| * Tribocaior Tribocal, Forcal<sub>1,3</sub>(2)
| |
| * Truprimitolplex, s(3,3,2,4)
| |
| * Tri-Unfyn, <u>3</u><sub>1</sub>(76)
| |
| * Cordetal, {10,100,1,4}
| |
| * Graatagoltesla / graatatesla, E100##100##100##100##2
| |
| * Tribuporcal, Forcal<sub>2,3</sub>(1)
| |
| * Truprimibol, s(3,2,3,4)
| |
| * Graatagoltesla-dexitetris, E100##100##100##100#100#2
| |
| * Truprimibolplex, s(3,3,3,4)
| |
| * Tri-Deufyn, <u>3</u><sub>2</sub>(76)
| |
| * Muldetal, {10,100,2,4}
| |
| * Greegoltesla / greegatesla, E100##100##100##100##3
| |
| * Tribegocal, Forcal<sub>3,3</sub>(1)
| |
| * Powdetal, {10,100,3,4}
| |
| * Greegoltesla-threxitetris, E100##100##100##100#100#100#2
| |
| * Hayden's Tetratri, 3(3)(3)3
| |
| * Tetentet, s(4,4,4,4)
| |
| * Tri-Troifyn, <u>3</u><sub>3</sub>(76)
| |
| * Grinningoltesla / grinnintesla, E100##100##100##100##4
| |
| * Tribypercal, Forcal<sub>4,3</sub>(1)
| |
| * Grinningoltesla-tetrexitetris, E100##100##100##100#100#100#100#2
| |
| * Supertet, {4,4,4,4}
| |
| * Tetdetal, {10,100,4,4}
| |
| * Golaagoltesla / golaatesla, E100##100##100##100##5
| |
| * Golaagoltesla-pentexitetris, E100##100##100##100#100#100#100#100#2
| |
| * Gruelohgoltesla / gruelohtesla, E100##100##100##100##6
| |
| * Gruelohgoltesla-hexitetris, E100##100##100##100#100#100#100#100#100#2
| |
| * Septasexa-sexahexar, <math>Q_{4,0}(6)</math>
| |
| * Gaspgoltesla, E100##100##100##100##7
| |
| * Gaspgoltesla-heptexitetris, E100##100##100##100#100#100#100#100#100#100#2
| |
| * Ginorgoltesla, E100##100##100##100##8
| |
| * Ginorgoltesla-octexitetris, E100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuultesla, E100##100##100##100##9
| |
| * Gargantuultesla-ennexitetris, E100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondoltesla, E100##100##100##100##10
| |
| * Gigantic tridecal, {10,10,10,4}
| |
| * Iteratris, 10[&&&10] = 10[&&&&]
| |
| * Quadrultom, <math>f_{\omega4}(10)</math>
| |
| * Googonkosoltesla, E100##100##100##100##20
| |
| * Googontritoltesla, E100##100##100##100##30
| |
| * Googonsartoltesla, E100##100##100##100##40
| |
| * Googonpetoltesla, E100##100##100##100##50
| |
| * Googonextoltesla, E100##100##100##100##60
| |
| * Googoneptoltesla, E100##100##100##100##70
| |
| * Googonogdoltesla, E100##100##100##100##80
| |
| * Googonentoltesla, E100##100##100##100##90
| |
| * Gugolpeta / gugonpeta / googonhectoltesla / goolpeta, E100##100##100##100##100
| |
| * Beegol / Tetrukiloogol, {10,10,100,4} = 10[0,4]100
| |
| * Bweegol, {10,10,1000,4}
| |
| * Beegolgong, {10,10,100000,4}
| |
| * Tetribocal, Forcal<sub>1,4</sub>(1)
| |
| * Quadprimitol, s(3,2,2,5)
| |
| * Gugolpeta-plexipentris, E100##100##100##100##100#2
| |
| * Beegolplex, {10,10,{10,10,100,4},4}
| |
| * Quadprimitolplex, s(3,3,2,5)
| |
| * Septahexar-unnar, <math>Q_{4,1}(6)</math>
| |
| * Corpental, {10,100,1,5}
| |
| * Graatagolpeta / graatapeta, E100##100##100##100##100##2
| |
| * Tetribuporcal, Forcal<sub>2,4</sub>(1)
| |
| * Quadprimibol, s(3,2,3,5)
| |
| * Graatagolpeta-dexipentris, E100##100##100##100##100#100#2
| |
| * Quadprimibolplex, s(3,3,3,5)
| |
| * Septahexar-duar, <math>Q_{4,2}(6)</math>
| |
| * Greegolpeta / greegapeta, E100##100##100##100##100##3
| |
| * Greegolpeta-threxipentris, E100##100##100##100##100#100#100#2
| |
| * Septahexar-trear, <math>Q_{4,3}(6)</math>
| |
| * Grinningolpeta / grinninpeta, E100##100##100##100##100##4
| |
| * Grinningolpeta-tetrexipentris, E100##100##100##100##100#100#100#100#2
| |
| * Hayden's Tetratet, 4(4)(4)4
| |
| * Tetenpent, s(5,5,5,5)
| |
| * Septahexar-quadrar, <math>Q_{4,4}(6)</math>
| |
| * Golaagolpeta / golaapeta, E100##100##100##100##100##5
| |
| * Golaagolpeta-pentexipentris, E100##100##100##100##100#100#100#100#100#2
| |
| * Tetrapent, {5,5,5,5}
| |
| * Septahexar-quintar, <math>Q_{4,5}(6)</math>
| |
| * Gruelohgolpeta / gruelohpeta, E100##100##100##100##100##6
| |
| * Gruelohgolpeta-hexipentris, E100##100##100##100##100#100#100#100#100#100#2
| |
| * Septahexar-sexar, <math>Q_{5,0}(6)</math>
| |
| * Gaspgolpeta, E100##100##100##100##100##7
| |
| * Gaspgolpeta-heptexipentris, E100##100##100##100##100#100#100#100#100#100#100#2
| |
| * Ginorgolpeta, E100##100##100##100##100##8
| |
| * Ginorgolpeta-octexipentris, E100##100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuulpeta, E100##100##100##100##100##9
| |
| * Gargantuulpeta-ennexipentris, E100##100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondolpeta, E100##100##100##100##100##10
| |
| * Googondolpeta-decexipentris, E100##100##100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Gorged tridecal, {10,10,10,5}
| |
| * Quintultom, <math>f_{\omega5}(10)</math>
| |
| * Googonkosolpeta, E100##100##100##100##100##20
| |
| * Googontritolpeta, E100##100##100##100##100##30
| |
| * Googonsartolpeta, E100##100##100##100##100##40
| |
| * Googonpetolpeta, E100##100##100##100##100##50
| |
| * Googonextolpeta, E100##100##100##100##100##60
| |
| * Googoneptolpeta, E100##100##100##100##100##70
| |
| * Googonogdolpeta, E100##100##100##100##100##80
| |
| * Googonentolpeta, E100##100##100##100##100##90
| |
| * Gugolhexa / gugonhexa / googonhectolpeta / goolhexa, E100##100##100##100##100##100
| |
| * Bigol / Pentukiloogol, {10,10,100,5} = 10[0,5]100
| |
| * Bwigol, {10,10,1000,5}
| |
| * Bigolgong, {10,10,100000,5}
| |
| * Pentibocal, Forcal<sub>1,5</sub>(1)
| |
| | |
| === Part 6.8: <math>f_{\omega5}(f_3(10))</math> ~ <math>f_{\omega7}(f_3(10))</math> ===
| |
| | |
| * Quinprimitol, s(3,2,2,6)
| |
| * Corhexal, {10,100,1,6}
| |
| * Gugolhexa-plexihexis, E100##100##100##100##100##100#2
| |
| * Quinprimitolplex, s(3,3,2,6)
| |
| * Septahexar-septar, <math>Q_{5,1}(6)</math>
| |
| * Graatagolhexa / graatahexa, E100##100##100##100##100##100#100
| |
| * Quinprimibol, s(3,2,3,6)
| |
| * Graatagolhexa-dexihexis, E100##100##100##100##100##100#100#2
| |
| * Quinprimibolplex, s(3,3,3,6)
| |
| * Septahexar-octar, <math>Q_{5,2}(6)</math>
| |
| * Greegolhexa / greegahexa, E100##100##100##100##100##100##3
| |
| * Greegolhexa-threxihexis, E100##100##100##100##100##100#100#100#2
| |
| * Septahexar-nonar, <math>Q_{5,3}(6)</math>
| |
| * Grinningolhexa / grinninhexa, E100##100##100##100##100##100##4
| |
| * Grinningolhexa-tetrexihexis, E100##100##100##100##100##100#100#100#100#2
| |
| * Septahexar-decar, <math>Q_{5,4}(6)</math>
| |
| * Golaagolhexa / golaahexa, E100##100##100##100##100##100##5
| |
| * Golaagolhexa-pentexihexis, E100##100##100##100##100##100#100#100#100#100#2
| |
| * Ascendhex, {3, 4, 5, 6}
| |
| * Tetenhex, s(6,6,6,6)
| |
| * Septahexar-undecar, <math>Q_{5,5}(6)</math>
| |
| * Gruelohgolhexa / gruelohhexa, E100##100##100##100##100##100##6
| |
| * Gruelohgolhexa-hexihexis, E100##100##100##100##100##100#100#100#100#100#100#2
| |
| * Tetrahex, {6,6,6,6}
| |
| * Septahexar-hexar, <math>Q_{1,0,0}(6)</math>
| |
| * Gaspgolhexa, E100##100##100##100##100##100##7
| |
| * Gaspgolhexa-heptexihexis, E100##100##100##100##100##100#100#100#100#100#100#100#2
| |
| * Ginorgolhexa, E100##100##100##100##100##100##8
| |
| * Ginorgolhexa-octexihexis, E100##100##100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuulhexa, E100##100##100##100##100##100##9
| |
| * Gargantuulhexa-ennexihexis, E100##100##100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondolhexa, E100##100##100##100##100##100##10
| |
| * Googondolhexa-decexihexis, E100##100##100##100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Gulp tridecal, {10,10,10,6}
| |
| * Iterapentis, 10[&&&&&10] = 10[&&&&&&]
| |
| * Sextultom, <math>f_{\omega6}(10)</math>
| |
| * Googonkosolhexa, E100##100##100##100##100##100##20
| |
| * Googontritolhexa, E100##100##100##100##100##100##30
| |
| * Googonsartolhexa, E100##100##100##100##100##100##40
| |
| * Googonpetolhexa, E100##100##100##100##100##100##50
| |
| * Googonextolhexa, E100##100##100##100##100##100##60
| |
| * Googoneptolhexa, E100##100##100##100##100##100##70
| |
| * Googonogdolhexa, E100##100##100##100##100##100##80
| |
| * Googonentolhexa, E100##100##100##100##100##100##90
| |
| * Gugolhepta / gugonhepta / googonhectolhexa, E100##100##100##100##100##100##100
| |
| * Boggol / Hexukiloogol, {10,10,100,6} = 10[0,6]100
| |
| * Bwoggol, {10,10,1000,6}
| |
| * Hexibocal, Forcal<sub>1,6</sub>(1)
| |
| * Gugolhepta-plexiheptis, E100##100##100##100##100##100##100#2
| |
| * Boggolplex, {10,10,{10,10,100,6},6}
| |
| * Corheptal, {10,100,1,7}
| |
| * Graatagolhepta, E100##100##100##100##100##100##100#100
| |
| * Graatagolhepta-dexiheptis, E100##100##100##100##100##100##100#100#2
| |
| * Greegolhepta, E100##100##100##100##100##100##100##3
| |
| * Greegolhepta-threxiheptis, E100##100##100##100##100##100##100#100#100#2
| |
| * Grinningolhepta, E100##100##100##100##100##100##100##4
| |
| * Grinningolhepta-tetrexiheptis, E100##100##100##100##100##100##100#100#100#100#2
| |
| * Golaagolhepta, E100##100##100##100##100##100##100##5
| |
| * Golaagolhepta-pentexiheptis, E100##100##100##100##100##100##100#100#100#100#100#2
| |
| * Gruelohgolhepta, E100##100##100##100##100##100##100##6
| |
| * Gruelohgolhepta-hexiheptis, E100##100##100##100##100##100##100#100#100#100#100#100#2
| |
| * Gaspgolhepta, E100##100##100##100##100##100##100##7
| |
| * Gaspgolhepta-heptexiheptis, E100##100##100##100##100##100##100#100#100#100#100#100#100#2
| |
| * Tetrahept, {7,7,7,7}
| |
| * Ginorgolhepta, E100##100##100##100##100##100##100##8
| |
| * Ginorgolhepta-octexiheptis, E100##100##100##100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuulhepta, E100##100##100##100##100##100##100##9
| |
| * Gargantuulhepta-ennexiheptis, E100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondolhepta, E100##100##100##100##100##100##100##10
| |
| * Googondolhepta-decexiheptis, E100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Gasp tridecal, {10,10,10,7}
| |
| * Septultom, <math>f_{\omega7}(10)</math>
| |
| * Googonkosolhepta, E100##100##100##100##100##100##100##20
| |
| * Googontritolhepta, E100##100##100##100##100##100##100##30
| |
| * Googonsartolhepta, E100##100##100##100##100##100##100##40
| |
| * Googonpetolhepta, E100##100##100##100##100##100##100##50
| |
| * Googonextolhepta, E100##100##100##100##100##100##100##60
| |
| * Googoneptolhepta, E100##100##100##100##100##100##100##70
| |
| * Googonogdolhepta, E100##100##100##100##100##100##100##80
| |
| * Googonentolhepta, E100##100##100##100##100##100##100##90
| |
| * Gugolocta / gugonocta / googonhectolhepta, E100##100##100##100##100##100##100##100
| |
| * Bagol / Heptukiloogol, {10,10,100,7} = 10[0,7]100
| |
| * Bwagol, {10,10,1000,7}
| |
| * Heptibocal, Forcal<sub>1,7</sub>(1)
| |
| | |
| === Part 6.9: <math>f_{\omega7}(f_3(10))</math> ~ <math>f_{\omega10}(f_3(10))</math> ===
| |
| | |
| * Gugolocta-plexoctis, E100##100##100##100##100##100##100##100#2
| |
| * Coroctal, {10,100,1,8}
| |
| * Graatagolocta, E100##100##100##100##100##100##100##100#100
| |
| * Graatagolocta-dexoctis, E100##100##100##100##100##100##100##100#100#2
| |
| * Greegolocta, E100##100##100##100##100##100##100##100##3
| |
| * Greegolocta-threxoctis, E100##100##100##100##100##100##100##100#100#100#2
| |
| * Grinningolocta, E100##100##100##100##100##100##100##100##4
| |
| * Grinningolocta-tetrexoctis, E100##100##100##100##100##100##100##100#100#100#100#2
| |
| * Golaagolocta, E100##100##100##100##100##100##100##100##5
| |
| * Golaagolocta-pentexoctis, E100##100##100##100##100##100##100##100#100#100#100#100#2
| |
| * Gruelohgolocta, E100##100##100##100##100##100##100##100##6
| |
| * Gruelohgolocta-hexoctis, E100##100##100##100##100##100##100##100#100#100#100#100#100#2
| |
| * Gaspgolocta, E100##100##100##100##100##100##100##100##7
| |
| * Gaspgolocta-heptexoctis, E100##100##100##100##100##100##100##100#100#100#100#100#100#100#2
| |
| * Ginorgolocta, E100##100##100##100##100##100##100##100##8
| |
| * Ginorgolocta-octexoctis, E100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuulocta, E100##100##100##100##100##100##100##100##9
| |
| * Gargantuulocta-ennexoctis, E100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondolocta, E100##100##100##100##100##100##100##100##10
| |
| * Googondolocta-decexoctis, E100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Octultom, <math>f_{\omega8}(10)</math>
| |
| * Googonkosolocta, E100##100##100##100##100##100##100##100##20
| |
| * Googontritolocta, E100##100##100##100##100##100##100##100##30
| |
| * Googonsartolocta, E100##100##100##100##100##100##100##100##40
| |
| * Googonpetolocta, E100##100##100##100##100##100##100##100##50
| |
| * Googonextolocta, E100##100##100##100##100##100##100##100##60
| |
| * Googoneptolocta, E100##100##100##100##100##100##100##100##70
| |
| * Googonogdolocta, E100##100##100##100##100##100##100##100##80
| |
| * Googonentolocta, E100##100##100##100##100##100##100##100##90
| |
| * Bocgol, {10,10,100,8}
| |
| * Gugolenna / gugonenna / googonhectolocta / gooemeralnona, E100##100##100##100##100##100##100##100##100
| |
| * Octukiloogol, 10[0,8]100
| |
| * Bwocgol, {10,10,1000,8}
| |
| * Octibocal, Forcal<sub>1,8</sub>(1)
| |
| * Bocgolplex, {10,10,bocgol,8}
| |
| * Gugolenna-plexenna, E100##100##100##100##100##100##100##100##100#2
| |
| * Corental, {10,100,1,9}
| |
| * Graatagolenna, E100##100##100##100##100##100##100##100##100#100
| |
| * Graatagolenna-dexenna, E100##100##100##100##100##100##100##100##100#100#2
| |
| * Greegolenna, E100##100##100##100##100##100##100##100##100##3
| |
| * Greegolenna-threxenna, E100##100##100##100##100##100##100##100##100#100#100#2
| |
| * Grinningolenna, E100##100##100##100##100##100##100##100##100##4
| |
| * Grinningolenna-tetrexenna, E100##100##100##100##100##100##100##100##100#100#100#100#2
| |
| * Golaagolenna, E100##100##100##100##100##100##100##100##100##5
| |
| * Golaagolenna-pentexenna, E100##100##100##100##100##100##100##100##100#100#100#100#100#2
| |
| * Gruelohgolenna, E100##100##100##100##100##100##100##100##100##6
| |
| * Gruelohgolenna-hexenna, E100##100##100##100##100##100##100##100##100#100#100#100#100#100#2
| |
| * Gaspgolenna, E100##100##100##100##100##100##100##100##100##7
| |
| * Gaspgolenna-heptexenna, E100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#2
| |
| * Ginorgolenna, E100##100##100##100##100##100##100##100##100##8
| |
| * Ginorgolenna-octexenna, E100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuulenna, E100##100##100##100##100##100##100##100##100##9
| |
| * Gargantuulenna-ennexenna, E100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondolenna, E100##100##100##100##100##100##100##100##100##10
| |
| * Googondolenna-decexenna, E100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * Nonultom, <math>f_{\omega9}(10)</math>
| |
| * Googonkosolenna, E100##100##100##100##100##100##100##100##100##20
| |
| * Googontritolenna, E100##100##100##100##100##100##100##100##100##30
| |
| * Googonsartolenna, E100##100##100##100##100##100##100##100##100##40
| |
| * Googonpetolenna, E100##100##100##100##100##100##100##100##100##50
| |
| * Googonextolenna, E100##100##100##100##100##100##100##100##100##60
| |
| * Googoneptolenna, E100##100##100##100##100##100##100##100##100##70
| |
| * Googonogdolenna, E100##100##100##100##100##100##100##100##100##80
| |
| * Googonentolenna, E100##100##100##100##100##100##100##100##100##90
| |
| * Gugoldeka / googonhectolenna / gugondeka / gooemeraldeca, E100##100##100##100##100##100##100##100##100##100
| |
| * Ennukiloogol, 10[0,9]100
| |
| * Bwengol, {10,10,1000,9}
| |
| * Bengolplex, {10,10,{10,10,100,9},9}
| |
| * Gugoldeka-plexideka, E100##100##100##100##100##100##100##100##100##100#2
| |
| * Cordecal, {10,100,1,10}
| |
| * Graatagoldeka, E100##100##100##100##100##100##100##100##100##100#100
| |
| * Graatagoldeka-dexideka, E100##100##100##100##100##100##100##100##100##100#100#2
| |
| * Greegoldeka, E100##100##100##100##100##100##100##100##100##100##3
| |
| * Greegoldeka-threxideka, E100##100##100##100##100##100##100##100##100##100#100#100#2
| |
| * Grinningoldeka, E100##100##100##100##100##100##100##100##100##100##4
| |
| * Grinningoldeka-tetrexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#2
| |
| * Golaagoldeka, E100##100##100##100##100##100##100##100##100##100##5
| |
| * Golaagoldeka-pentexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#100#2
| |
| * Gruelohgoldeka, E100##100##100##100##100##100##100##100##100##100##6
| |
| * Gruelohgoldeka-hexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#100#100#2
| |
| * Gaspgoldeka, E100##100##100##100##100##100##100##100##100##100##7
| |
| * Gaspgoldeka-heptexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#2
| |
| * Ginorgoldeka, E100##100##100##100##100##100##100##100##100##100##8
| |
| * Ginorgoldeka-octexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#2
| |
| * Gargantuuldeka, E100##100##100##100##100##100##100##100##100##100##9
| |
| * Gargantuuldeka-ennexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#2
| |
| * Googondoldeka, E100##100##100##100##100##100##100##100##100##100##10
| |
| * Googondoldeka-decexideka, E100##100##100##100##100##100##100##100##100##100#100#100#100#100#100#100#100#100#100#2
| |
| * General / tetradecal, {10,10,10,10}
| |
| * Dekultom / bexom, <math>f_{\omega10}(10)</math>
| |
| * Googonkosoldeka, E100##100##100##100##100##100##100##100##100##100##20
| |
| * Googontritoldeka, E100##100##100##100##100##100##100##100##100##100##30
| |
| * Googonsartoldeka, E100##100##100##100##100##100##100##100##100##100##40
| |
| * Googonpetoldeka, E100##100##100##100##100##100##100##100##100##100##50
| |
| * Googonextoldeka, E100##100##100##100##100##100##100##100##100##100##60
| |
| * Googoneptoldeka, E100##100##100##100##100##100##100##100##100##100##70
| |
| * Googonogdoldeka, E100##100##100##100##100##100##100##100##100##100##80
| |
| * Googonentoldeka, E100##100##100##100##100##100##100##100##100##100##90
| |
| * Gugolendeka / googonhectoldeka / gooemeralelevened, E100###11
| |
| * Dekagranika, <0,10> |488
| |
| * Bexgol / dekukiloogol, {10,10,100,10} = 10[0,10]100
| |
| * Bwexgol, {10,10,1000,10}
| |
| | |
| === Part 6.10: <math>f_{\omega10}(f_3(10))</math> ~ <math>f_{\omega^2}(f_3(10))</math> ===
| |
| | |
| * Bexgolplex, {10,10,{10,10,100,10},10}
| |
| * Hayden's General, 10(10)(10)10
| |
| * Iteradekis, 10[&&&&&&&&&&10] = 10[&&&&&&&&&&&]
| |
| * Gugoldodeka / gooemeraldozed, E100###12
| |
| * Tetradozenal, {12,12,12,12}
| |
| * Gugoltriadeka, E100###13
| |
| * Gugoltetradeka, E100###14
| |
| * Gugolpentadeka, E100###15
| |
| * Gugolhexadeka, E100###16
| |
| * Gugolheptadeka, E100###17
| |
| * Gugoloctadeka, E100###18
| |
| * Gugolennadeka, E100###19
| |
| * Troo-guppy, {10,10,10,20}
| |
| * Gugolicosa, E100###20
| |
| * Gugoltrianta, E100###30
| |
| * Pete.c numbers|pete-4.c, <math>\approx f_{\omega33}(10^5)</math>
| |
| * Gugolsaranta, E100###40
| |
| * Troo-gogol, {10,10,10,50}
| |
| * Gugolpeninta, E100###50
| |
| * Chan.c numbers|chan.c, <math>\approx f_{\omega50}(10^5)</math>
| |
| * Gugolexinta, E100###60
| |
| * White-aster, <math>\text{Ast}[5,\langle64\rangle]</math>
| |
| * Gugolebdominta, E100###70
| |
| * Greps, |1|<sub>0</sub>(76)
| |
| * Gugologdonta, E100###80
| |
| * Troogolspeck, {10,10,10,90}
| |
| * Gugoleneninta, E100###90
| |
| * Throogol / throogord / gugolhecta / goohoolgol, E100###100
| |
| * Grandogoogolplex, 10<sup>E100###100</sup>
| |
| * Grandogoogoldex, E100#(E100###100)
| |
| * Grandogoogolsuplex, E100##(E100###100)
| |
| * Grandogoogolsusuplex, E100##100##(E100###100)
| |
| * Grandogoogoltetrasuplex, E100##100##100##(E100###100)
| |
| * Troogol / Megoogol, {10,10,10,100} = 10[0,0,1]100
| |
| * Hektultom, <math>f_{\omega100}(10)</math>
| |
| * Tetrahectal, {100,100,100,100}
| |
| * Grid-hyperon, 100{X<sup>2</sup>}100
| |
| * Astuul, #{1}((10))*100
| |
| * Hektagranika, <0,100> |488
| |
| * Kaboodol, <math>f\rightarrow\underbrace{10\rightarrow\ldots10\rightarrow10}_{100}(100)</math>, where f(n) = hyper(n,n,n)
| |
| * Wakamoogol, <math>h\rightarrow\underbrace{10\rightarrow\cdots10\rightarrow10}_{\text{100 10's}}(100)</math>, where h is hyperlicious function
| |
| * Giabollaxul, 200$1
| |
| * Giabixul, 200![200,200] ~ {10,10,199,201}
| |
| * Kilogiabixul, (200![200,200])![200,200] ~ {10,3,200,201}
| |
| * Megagiabixul, ((200![200,200])![200,200])![200,200] ~ {10,4,200,201}
| |
| * Gigagiabixul, (((200![200,200])![200,200])![200,200])![200,200] ~ {10,5,200,201}
| |
| * Grand Giabixul, 200(![200,200])<sup>200![200,200]+1</sup> ~ {10,giabixul,200,201}
| |
| * Grand Kilogiabixul, 200(![200,200])<sup>(200![200,200])![200,200]+1</sup> ~ {10,kilogiabixul,200,201}
| |
| * Grand Megagiabixul, 200(![200,200])<sup>((200![200,200])![200,200])![200,200]+1</sup>
| |
| * Grand Gigagiabixul, 200(![200,200])<sup>(((200![200,200])![200,200])![200,200])![200,200]+1</sup>
| |
| * Bigrand Giabixul, 200(![200,200])<sup>200(![200,200])<sup>200![200,200]+1</sup>+1</sup> ~ {10,Grand Giabixul,200,201}
| |
| * Trigrand Giabixul, 200(![200,200])<sup>200(![200,200])<sup>200(![200,200])<sup>200![200,200]+1</sup>+1</sup>+1</sup> ~ {10,4,201,201}
| |
| * Collanika, <0,0,1>|488
| |
| * Throogolchime, E1000###1000
| |
| * Trwoogol, {10,10,10,1000}
| |
| * Kilultom, <math>f_{\omega1000}(10)</math>
| |
| * Throogoltoll, E10,000###10,000
| |
| * Troogoltoll, {10,10,10,10000}
| |
| * Level 5 gyatt rizz livvy dunne rizzing up baby gronk, <math>f_{\omega^2}(69420)</math>
| |
| * Throogolgong, E100,000###100,000
| |
| * Troogolgong, {10,10,10,100000}
| |
| * Gugolchilia-chila / gugolmega, E100###1,000,000
| |
| * Megultom, <math>f_{\omega1000000}(10)</math>
| |
| * Tris-Terribocal, Forcal<sub>1,1000000</sub>(1) = Forcal<sub>1,1,2</sub>(1)
| |
| * Gigultom, <math>f_{\omega10^9}(10)</math>
| |
| * Terultom, <math>f_{\omega10^{12}}(10)</math>
| |
| * Petultom, <math>f_{\omega10^{15}}(10)</math>
| |
| * Exultom, <math>f_{\omega10^{18}}(10)</math>
| |
| * Zettultom, <math>f_{\omega10^{21}}(10)</math>
| |
| * Yottultom, <math>f_{\omega10^{24}}(10)</math>
| |
| * Googolplexithird, E100###1#2
| |
| | |
| 【[[Googolism - Part 5|更小]] | [[Googolism|主页]] | [[Googolism - Part 7|更大]]】 | |
|
| |
|
| [[分类:经典大数]] | | [[分类:经典大数]] |