证明论序数:修订间差异
来自Googology Wiki
更多操作
无编辑摘要 |
无编辑摘要 |
||
第219行: | 第219行: | ||
|<math>{\rm ID}_{<\omega}</math><br><math>({\rm ID}_{<\omega}^2)_0</math> | |<math>{\rm ID}_{<\omega}</math><br><math>({\rm ID}_{<\omega}^2)_0</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega\cdot\omega^\omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-IND</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega\cdot\varepsilon_0)</math> | ||
| | |<math>\rm \Pi_1^1-CA</math> | ||
| | |<math>\rm W-KPl</math> | ||
| | |<math>\rm W-ID_\omega</math> | ||
<math>\rm ID_{<\omega}^2</math> | |||
|- | |- | ||
| | |<math>\psi(\Omega_\omega\cdot\Omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA+BR</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega^\omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-BI</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega^{\omega^\omega})</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-BI+\Pi_3^1-IND</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\omega(0))</math> | ||
| | |<math>\rm \Pi_1^1-CA+BI</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\omega^\omega})</math> | ||
| | |<math>\rm \Delta_2^1-CR</math> | ||
<math>\rm (\Pi_1^1-CA_{<\omega^\omega})</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\varepsilon_0})</math> | ||
| | |<math>\rm \Delta_2^1-CA</math> | ||
<math>\rm \Sigma_2^1-AC</math> | |||
<math>\rm (\Pi_1^1-CA_{<\varepsilon_0})</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\nu\cdot\omega})</math> | ||
| | |<math>\rm (\Pi_1^1-CA_\nu^+)_0</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\gamma\cdot\omega)</math> | ||
| | |<math>\rm (\Pi_1^1-CA_{\gamma-})_0</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\nu\cdot\omega}\cdot\varepsilon_0))</math> | ||
| | |<math>\rm \Pi_1^1-CA_\nu^+</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\gamma\cdot\varepsilon_0)</math> | ||
| | |<math>\rm (\Pi_1^1-CA_\gamma)</math> | ||
<math>\rm \Pi_1^1-CA_{\gamma-}</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\nu\cdot\omega}\cdot\Omega))</math> | ||
| | |<math>\rm \Pi_1^1-CA_\nu^++BR</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\gamma\cdot\Omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA_{\gamma-}+BR</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\omega^\gamma})</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\nu(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\nu(\varepsilon_0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\nu(\Omega))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\nu(\psi_\nu(0)))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_{\nu+1}(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_{\nu\cdot\omega}(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\gamma(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\Omega(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_I(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_I(0)\cdot\varepsilon_0)</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_{\Omega_{\psi_I(0)+1}}(0))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_I(I^\omega))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_I(I^{\varepsilon_0}))</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\varepsilon_{I+1})</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\Omega_{I+\omega})</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\varepsilon_{M+1})</math> | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\Omega_{M+\omega})</math> | ||
| | | | ||
| | | |
2025年7月21日 (一) 22:13的版本
证明论序数(或称证明论强度序数,Proof-Theoretic Ordinal)是衡量形式理论强度的核心工具,通过将理论映射到序数上,刻画其能证明的良序关系的复杂度。该概念源于希尔伯特的证明论计划,旨在通过有限方法证明数学基础理论的一致性,后由阿克曼(Wilhelm Ackermann)和根岑(Gerhard Gentzen)发展为序数分析技术。
定义和性质
序数是良序集的序型,满足超限归纳原理:,其中 是任意性质。
对形式理论 ,其证明论序数 (在 googology 语境中,可写为 )定义为满足以下条件的最小序数 :
- 存在一种自然表示序数 的递归记号系统
- 通过超限归纳至 ,可证明 的一致性(即 )
- 能证明所有初等递归函数在 的序数上总停止
或者说,是理论 能用超限归纳证明的原始递归良序的序型最大值。
证明论序数满足:
- 不可达性(Inaccessibility):若 ,则 无法证明“存在序数 使得 ”的良序性
- 递归性(Recursivity):证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序
证明论序数表
证明论序数 | 算术论体系 | 集合论体系 | 其他体系 |
---|---|---|---|
- | |||
| |||
|
|||
|
|||
|
|||