打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

BMS分析:修订间差异

来自Googology Wiki
Zhy137036留言 | 贡献
无编辑摘要
Zhy137036留言 | 贡献
第75行: 第75行:


==== 2:双行BMS ====
==== 2:双行BMS ====
<math>(0)(1,1)=\varepsilon_0</math>
{| class="wikitable"
|-
! BMS !! Veblen !! MOCF
|-
| <math>(0)(1,1)</math> || <math>\varepsilon_0</math>
|-
| <math>(0)(1,1)(0,0)</math> || <math>\varepsilon_0+1</math>
|-
| <math>(0)(1,1)(0,0)(1,0)</math> || <math>\varepsilon_0+\omega</math>
|-
| <math>(0)(1,1)(0,0)(1,1)</math> || <math>\varepsilon_0\times2</math>
|-
| <math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)</math> || <math>\varepsilon_0\times3</math>
|-
| <math>(0)(1,1)(1,0)</math> || <math>\varepsilon_0\times\omega</math>
|-
| <math>(0)(1,1)(1,0)(1,0)</math> || <math>\varepsilon_0\times\omega^2</math>
|-
| <math>(0)(1,1)(1,0)(2,0)</math> || <math>\varepsilon_0\times\omega^\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,0)(3,0)</math> || <math>\varepsilon_0\times\omega^{\omega^\omega}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)</math> || <math>\varepsilon_0^2</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)</math> || <math>\varepsilon_0^2\times\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)</math> || <math>\varepsilon_0^2\times\omega^\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)</math> || <math>\varepsilon_0^3</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)</math> || <math>\varepsilon_0^4</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)</math> || <math>\varepsilon_0^\omega</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)</math> || <math>\varepsilon_0^{\omega+1}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)</math> || <math>\varepsilon_0^{\omega+2}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)</math> || <math>\varepsilon_0^{\omega\times2}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)</math> || <math>\varepsilon_0^{\omega\times3}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)</math> || <math>\varepsilon_0^{\omega^2}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)</math> || <math>\varepsilon_0^{\omega^\omega}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)</math> || <math>\varepsilon_0^{\omega^{\omega^\omega}}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)</math> || <math>\varepsilon_0^{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)</math> || <math>\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math>
|-
| <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)</math> || <math>\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math>
|-
| <math>(0)(1,1)(1,1)</math> || <math>\varepsilon_1</math>
|-
| <math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)</math> || <math>\varepsilon_1\times2</math>
|-
| <math>(0)(1,1)(1,1)(1,0)</math> || <math>\varepsilon_1\times\omega</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)</math> || <math>\varepsilon_1\times\varepsilon_0</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)</math> || <math>\varepsilon_1\times\varepsilon_0^2</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)</math> || <math>\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)</math> || <math>\varepsilon_1^2</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)</math> || <math>\varepsilon_1^\omega</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)</math> || <math>\varepsilon_1^{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)</math> || <math>\varepsilon_1^{\varepsilon_1}</math>
|-
| <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)</math> || <math>\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math>
|-
| <math>(0)(1,1)(1,1)(1,1)</math> || <math>\varepsilon_2</math>
|-
| <math>(0)(1,1)(1,1)(1,1)(1,1)</math> || <math>\varepsilon_3</math>
|-
| <math>(0)(1,1)(2,0)</math> || <math>\varepsilon_\omega</math>
|-
| <math>(0)(1,1)(2,0)(1,0)</math> || <math>\varepsilon_\omega\times\omega</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)</math> || <math>\varepsilon_\omega\times\varepsilon_0</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)</math> || <math>\varepsilon_\omega\times\varepsilon_1</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)</math> || <math>\varepsilon_\omega\times\varepsilon_2</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)</math> || <math>\varepsilon_\omega\times\varepsilon_3</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)</math> || <math>\varepsilon_\omega^2</math>
|-
| <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)</math> || <math>\varepsilon_\omega^{\varepsilon_\omega}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)</math> || <math>\varepsilon_{\omega+1}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(1,1)</math> || <math>\varepsilon_{\omega+2}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)</math> || <math>\varepsilon_{\omega+3}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(2,0)</math> || <math>\varepsilon_{\omega\times2}</math>
|-
| <math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)</math> || <math>\varepsilon_{\omega\times3}</math>
|-
| <math>(0)(1,1)(2,0)(2,0)</math> || <math>\varepsilon_{\omega^2}</math>
|-
| <math>(0)(1,1)(2,0)(2,0)(2,0)</math> || <math>\varepsilon_{\omega^3}</math>
|-
| <math>(0)(1,1)(2,0)(3,0)</math> || <math>\varepsilon_{\omega^\omega}</math>
|-
| <math>(0)(1,1)(2,0)(3,0)(4,0)</math> || <math>\varepsilon_{\omega^{\omega^\omega}}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)</math> || <math>\varepsilon_{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(1,1)</math> || <math>\varepsilon_{\varepsilon_0+1}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(3,1)</math> || <math>\varepsilon_{\varepsilon_1}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(4,0)</math> || <math>\varepsilon_{\varepsilon_\omega}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)</math> || <math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
|-
| <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)</math> || <math>\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math>
|-
| <math>(0)(1,1)(2,1)</math> || <math>\zeta_0</math>
|-
| <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)</math> || <math>\zeta_0^2</math>
|-
| <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)</math> || <math>\zeta_0^{\zeta_0}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)</math> || <math>\varepsilon_{\zeta_0+1}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)</math> || <math>\varepsilon_{\zeta_0+1}^2</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(1,1)</math> || <math>\varepsilon_{\zeta_0+2}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)</math> || <math>\varepsilon_{\zeta_0+\omega}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)</math> || <math>\varepsilon_{\zeta_0+\varepsilon_0}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)</math> || <math>\varepsilon_{\zeta_0\times2}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)</math> || <math>\varepsilon_{\varepsilon_{\zeta_0+1}}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)</math> || <math>\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)</math> || <math>\zeta_1</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)</math> || <math>\varepsilon_{\zeta_1+1}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,0)</math> || <math>\varepsilon_{\zeta_1+\omega}</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</math> || <math>\zeta_2</math>
|-
| <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)</math> || <math>\zeta_3</math>
|-
| <math>(0)(1,1)(2,1)(2,0)</math> || <math>\zeta_\omega</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(2,0)</math> || <math>\zeta_{\omega^2}</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(3,1)</math> || <math>\zeta_{\varepsilon_0}</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)</math> || <math>\zeta_{\zeta_0}</math>
|-
| <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)</math> || <math>\zeta_{\zeta_{\zeta_0}}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)</math> || <math>\eta_0</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)</math> || <math>\varepsilon_{\eta_0+1}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)</math> || <math>\zeta_{\eta_0+1}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)</math> || <math>\zeta_{\zeta_{\eta_0+1}}</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)</math> || <math>\eta_1</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)</math> || <math>\eta_2</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(2,0)</math> || <math>\eta_\omega</math>
|-
| <math>(0)(1,1)(2,1)(2,1)(2,1)</math> || <math>\varphi(4,0)</math> || <math>\psi(\Omega^3)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)</math> || <math>\varphi(\omega,0)</math> || <math>\psi(\Omega^\omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)</math> || <math>\varphi(1,\varphi(\omega,0)+1)</math> || <math>\psi(\Omega^\omega+1)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)</math> || <math>\varphi(2,\varphi(\omega,0)+1)</math> || <math>\psi(\Omega^\omega+\Omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)</math> || <math>\varphi(3,\varphi(\omega,0)+1)</math> || <math>\psi(\Omega^\omega+\Omega^2)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)</math> || <math>\varphi(\omega,1)</math> || <math>\psi(\Omega^\omega\times2)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)</math> || <math>\varphi(\omega,2)</math> || <math>\psi(\Omega^\omega\times3)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,0)</math> || <math>\varphi(\omega,\omega)</math> || <math>\psi(\Omega^\omega\times\omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)</math> || <math>\varphi(\omega+1,0)</math> || <math>\psi(\Omega^{\omega+1})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)</math> || <math>\varphi(\omega+2,0)</math> || <math>\psi(\Omega^{\omega+2})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)</math> || <math>\varphi(\omega+3,0)</math> || <math>\psi(\Omega^{\omega+3})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)</math> || <math>\varphi(\omega\times2,0)</math> || <math>\psi(\Omega^{\omega\times2})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)</math> || <math>\varphi(\omega\times3,0)</math> || <math>\psi(\Omega^{\omega\times3})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(3,0)</math> || <math>\varphi(\omega^2,0)</math> || <math>\psi(\Omega^{\omega^2})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)</math> || <math>\varphi(\varphi(1,0),0)</math> || <math>\psi(\Omega^{\psi(0)})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)</math> || <math>\varphi(\varphi(2,0),0)</math> || <math>\psi(\Omega^{\psi(\Omega)})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)</math> || <math>\varphi(\varphi(\omega,0),0)</math> || <math>\psi(\Omega^{\psi(\Omega^\omega)})</math>
|-
| <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)</math> || <math>\varphi(\varphi(\varphi(\omega,0),0),0)</math> || <math>\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)</math> || <math>\varphi(1,0,0)=\Gamma_0</math> || <math>\psi(\Omega^\Omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)</math> || <math>\varphi(1,0,1)=\Gamma_1</math> || <math>\psi(\Omega^\Omega\times2)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)</math> || <math>\varphi(1,0,2)=\Gamma_2</math> || <math>\psi(\Omega^\Omega\times3)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,0)</math> || <math>\varphi(1,0,\omega)=\Gamma_\omega</math> || <math>\psi(\Omega^\Omega\times\omega)</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)</math> || <math>\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}</math> || <math>\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)</math> || <math>\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}</math> || <math>\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)</math> || <math>\varphi(1,1,0)</math> || <math>\psi(\Omega^{\Omega+1})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)</math> || <math>\varphi(1,2,0)</math> || <math>\psi(\Omega^{\Omega+2})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)</math> || <math>\varphi(1,\omega,0)</math> || <math>\psi(\Omega^{\Omega+\omega})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)</math> || <math>\varphi(1,\varphi(1,\omega,0),0)</math> || <math>\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)</math> || <math>\psi(2,0,0)</math> || <math>\psi(\Omega^{\Omega\times2})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)</math> || <math>\psi(3,0,0)</math> || <math>\psi(\Omega^{\Omega\times3})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(3,0)</math> || <math>\varphi(\omega,0,0)</math> || <math>\psi(\Omega^{\Omega\times\omega})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(3,1)</math> || <math>\varphi(1,0,0,0)</math> || <math>\psi(\Omega^{\Omega^2})</math>
|-
| <math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)</math> || <math>\varphi(1,0,0,0,0)</math> || <math>\psi(\Omega^{\Omega^3})</math>
|}


<math>(0)(1,1)(0,0)=\varepsilon_0+1</math>
{| class="wikitable"
 
|-
<math>(0)(1,1)(0,0)(1,0)=\varepsilon_0+\omega</math>
! BMS !! MOCF
 
|-
<math>(0)(1,1)(0,0)(1,1)=\varepsilon_0\times2</math>
| <math>(0)(1,1)(2,1)(3,1)(4,0)</math> || <math>\psi(\Omega^{\Omega^\omega})</math>
 
|-
<math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)=\varepsilon_0\times3</math>
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)</math> || <math>\psi(\Omega^{\Omega^{\psi(0)}})</math>
 
|-
<math>(0)(1,1)(1,0)=\varepsilon_0\times\omega</math>
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)</math> || <math>\psi(\Omega^{\Omega^{\psi(\Omega)}})</math>
 
|-
<math>(0)(1,1)(1,0)(1,0)=\varepsilon_0\times\omega^2</math>
| <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)</math> || <math>\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math>
 
|-
<math>(0)(1,1)(1,0)(2,0)=\varepsilon_0\times\omega^\omega</math>
| <math>(0)(1,1)(2,1)(3,1)(4,1)</math> || <math>\psi(\Omega^{\Omega^\Omega})</math>
 
|-
<math>(0)(1,1)(1,0)(2,0)(3,0)=\varepsilon_0\times\omega^{\omega^\omega}</math>
| <math>(0)(1,1)(2,1)(3,1)(4,1)(5,1)</math> || <math>\psi(\Omega^{\Omega^{\Omega^\Omega}})</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)=\varepsilon_0^2</math>
| <math>(0)(1,1)(2,2)</math> || <math>\psi(\psi_1(0))</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)=\varepsilon_0^2\times\omega</math>
| <math>(0)(1,1)(2,2)(1,1)</math> || <math>\psi(\psi_1(0)+1)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)=\varepsilon_0^2\times\omega^\omega</math>
| <math>(0)(1,1)(2,2)(1,1)(2,1)</math> || <math>\psi(\psi_1(0)+\Omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^3</math>
| <math>(0)(1,1)(2,2)(1,1)(2,1)(3,1)</math> || <math>\psi(\psi_1(0)+\Omega^\Omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^4</math>
| <math>(0)(1,1)(2,2)(1,1)(2,2)</math> || <math>\psi(\psi_1(0)\times2)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)=\varepsilon_0^\omega</math>
| <math>(0)(1,1)(2,2)(2,0)</math> || <math>\psi(\psi_1(0)\times\omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)=\varepsilon_0^{\omega+1}</math>
| <math>(0)(1,1)(2,2)(2,1)</math> || <math>\psi(\psi_1(0)\times\Omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^{\omega+2}</math>
| <math>(0)(1,1)(2,2)(2,1)(3,0)</math> || <math>\psi(\psi_1(0)\times\Omega^\omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times2}</math>
| <math>(0)(1,1)(2,2)(2,1)(3,1)</math> || <math>\psi(\psi_1(0)\times\Omega^\Omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times3}</math>
| <math>(0)(1,1)(2,2)(2,1)(3,2)</math> || <math>\psi(\psi_1(0)^2)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)=\varepsilon_0^{\omega^2}</math>
| <math>(0)(1,1)(2,2)(2,1)(3,2)(3,0)</math> || <math>\psi(\psi_1(0)^\omega)</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)=\varepsilon_0^{\omega^\omega}</math>
| <math>(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)</math> || <math>\psi(\psi_1(0)^{\psi_1(0)})</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)=\varepsilon_0^{\omega^{\omega^\omega}}</math>
| <math>(0)(1,1)(2,2)(2,2)</math> || <math>\psi(\psi_1(1))</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_0^{\varepsilon_0}</math>
| <math>(0)(1,1)(2,2)(3,0)</math> || <math>\psi(\psi_1(\omega))</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math>
| <math>(0)(1,1)(2,2)(3,1)(4,2)</math> || <math>\psi(\psi_1(\psi_1(0)))</math>
 
|-
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math>
| <math>(0)(1,1)(2,2)(3,2)</math> || <math>\psi(\Omega_2)</math>
 
|-
<math>(0)(1,1)(1,1)=\varepsilon_1</math>
| <math>(0)(1,1)(2,2)(3,2)(1,1)</math> || <math>\psi(\Omega_2+\Omega)</math>
 
|-
<math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)=\varepsilon_1\times2</math>
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)</math> || <math>\psi(\Omega_2+\psi_1(0))</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)=\varepsilon_1\times\omega</math>
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2)</math> || <math>\psi(\Omega_2+\psi_1(\psi_1(0)))</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)=\varepsilon_1\times\varepsilon_0</math>
| <math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2))</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_1\times\varepsilon_0^2</math>
| <math>(0)(1,1)(2,2)(3,2)(2,0)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2)\times\omega)</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math>
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2)^2)</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)=\varepsilon_1^2</math>
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2)^\omega)</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)=\varepsilon_1^\omega</math>
| <math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)})</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)=\varepsilon_1^{\varepsilon_0}</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+1))</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,0)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\omega))</math>
 
|-
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math>
 
|-
<math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)\times\omega))</math>
 
|-
<math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^\omega))</math>
 
|-
<math>(0)(1,1)(2,0)=\varepsilon_\omega</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)}))</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)=\varepsilon_\omega\times\omega</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+1)))</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)(2,1)=\varepsilon_\omega\times\varepsilon_0</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\omega)))</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2)</math> || <math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2))))</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math>
| <math>(0)(1,1)(2,2)(3,2)(2,2)(3,2)</math> || <math>\psi(\Omega_2\times2)</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math>
| <math>(0)(1,1)(2,2)(3,2)(3,0)</math> || <math>\psi(\Omega_2\times\omega)</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)=\varepsilon_\omega^2</math>
| <math>(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2)</math> || <math>\psi(\Omega_2\times\psi_1(\Omega_2))</math>
 
|-
<math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)=\varepsilon_\omega^{\varepsilon_\omega}</math>
| <math>(0)(1,1)(2,2)(3,2)(3,2)</math> || <math>\psi(\Omega_2^2)</math>
 
|-
<math>(0)(1,1)(2,0)(1,1)=\varepsilon_{\omega+1}</math>
| <math>(0)(1,1)(2,2)(3,2)(4,0)</math> || <math>\psi(\Omega_2^\omega)</math>
 
|-
<math>(0)(1,1)(2,0)(1,1)(1,1)=\varepsilon_{\omega+2}</math>
| <math>(0)(1,1)(2,2)(3,2)(4,2)</math> || <math>\psi(\Omega_2^{\Omega_2})</math>
 
|-
<math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math>
| <math>(0)(1,1)(2,2)(3,3)</math> || <math>\psi(\psi_2(0))</math>
 
|-
<math>(0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times2}</math>
| <math>(0)(1,1)(2,2)(3,3)(4,3)</math> || <math>\psi(\Omega_3)</math>
 
|-
<math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times3}</math>
| <math>(0)(1,1)(2,2)(3,3)(4,4)</math> || <math>\psi(\psi_3(0))</math>
 
|-
<math>(0)(1,1)(2,0)(2,0)=\varepsilon_{\omega^2}</math>
| <math>(0)(1,1,1)=(0)(1,1)(2,2)(3,3)\cdots</math> || <math>\psi(\Omega_\omega)</math>
 
|}
<math>(0)(1,1)(2,0)(2,0)(2,0)=\varepsilon_{\omega^3}</math>
 
<math>(0)(1,1)(2,0)(3,0)=\varepsilon_{\omega^\omega}</math>
 
<math>(0)(1,1)(2,0)(3,0)(4,0)=\varepsilon_{\omega^{\omega^\omega}}</math>
 
<math>(0)(1,1)(2,0)(3,1)=\varepsilon_{\varepsilon_0}</math>
 
<math>(0)(1,1)(2,0)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math>
 
<math>(0)(1,1)(2,0)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math>
 
<math>(0)(1,1)(2,0)(3,1)(4,0)=\varepsilon_{\varepsilon_\omega}</math>
 
<math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
 
<math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math>
 
<math>(0)(1,1)(2,1)=\zeta_0</math>
 
<math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)=\zeta_0^2</math>
 
<math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)=\zeta_0^{\zeta_0}</math>
 
<math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math>
 
<math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math>
 
<math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_0+\omega}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_1+\omega}</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math>
 
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math>
 
<math>(0)(1,1)(2,1)(2,0)=\zeta_\omega</math>
 
<math>(0)(1,1)(2,1)(2,0)(2,0)=\zeta_{\omega^2}</math>
 
<math>(0)(1,1)(2,1)(2,0)(3,1)=\zeta_{\varepsilon_0}</math>
 
<math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)=\zeta_{\zeta_0}</math>
 
<math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math>
 
<math>(0)(1,1)(2,1)(2,1)=\eta_0</math>
 
<math>(0)(1,1)(2,1)(2,1)(1,1)=\varepsilon_{\eta_0+1}</math>
 
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math>
 
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math>
 
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math>
 
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math>
 
<math>(0)(1,1)(2,1)(2,1)(2,0)=\eta_\omega</math>
 
<math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math>
 
<math>(0)(1,1)(2,1)(3,0)=\varphi(\omega,0)=\psi(\Omega^\omega)</math>
 
<math>(0)(1,1)(2,1)(3,0)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math>
 
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math>
 
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math>
 
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math>
 
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math>
 
<math>(0)(1,1)(2,1)(3,0)(2,0)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math>
 
<math>(0)(1,1)(2,1)(3,0)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math>
 
<math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math>
 
<math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math>
 
<math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math>
 
<math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math>
 
<math>(0)(1,1)(2,1)(3,0)(3,0)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math>
 
<math>(0)(1,1)(2,1)(3,0)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math>
 
<math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math>
 
<math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math>
 
<math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math>
 
<math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>
 
<math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,1)=\Gamma_1=\psi(\Omega^\Omega\times2)</math>
 
<math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,0)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math>
 
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math>
 
<math>(0)(1,1)(2,1)(3,1)(3,0)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math>
 
<math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math>
 
<math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math>
 
<math>(0)(1,1)(2,1)(3,1)(4,0)=\psi(\Omega^{\Omega^\omega})</math>
 
<math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math>
 
<math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math>
 
<math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math>
 
<math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math>
 
<math>(0)(1,1)(2,1)(3,1)(4,1)(5,1)=\psi(\Omega^{\Omega^{\Omega^\Omega}})</math>
 
<math>(0)(1,1)(2,2)=\psi(\psi_1(0))</math>
 
<math>(0)(1,1)(2,2)(1,1)=\psi(\psi_1(0)+1)</math>
 
<math>(0)(1,1)(2,2)(1,1)(2,1)=\psi(\psi_1(0)+\Omega)</math>
 
<math>(0)(1,1)(2,2)(1,1)(2,1)(3,1)=\psi(\psi_1(0)+\Omega^\Omega)</math>
 
<math>(0)(1,1)(2,2)(1,1)(2,2)=\psi(\psi_1(0)\times2)</math>
 
<math>(0)(1,1)(2,2)(2,0)=\psi(\psi_1(0)\times\omega)</math>
 
<math>(0)(1,1)(2,2)(2,1)=\psi(\psi_1(0)\times\Omega)</math>
 
<math>(0)(1,1)(2,2)(2,1)(3,0)=\psi(\psi_1(0)\times\Omega^\omega)</math>
 
<math>(0)(1,1)(2,2)(2,1)(3,1)=\psi(\psi_1(0)\times\Omega^\Omega)</math>
 
<math>(0)(1,1)(2,2)(2,1)(3,2)=\psi(\psi_1(0)^2)</math>
 
<math>(0)(1,1)(2,2)(2,1)(3,2)(3,0)=\psi(\psi_1(0)^\omega)</math>
 
<math>(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)=\psi(\psi_1(0)^{\psi_1(0)})</math>
 
<math>(0)(1,1)(2,2)(2,2)=\psi(\psi_1(1))</math>
 
<math>(0)(1,1)(2,2)(3,0)=\psi(\psi_1(\omega))</math>
 
<math>(0)(1,1)(2,2)(3,1)(4,2)=\psi(\psi_1(\psi_1(0)))</math>
 
<math>(0)(1,1)(2,2)(3,2)=\psi(\Omega_2)</math>
 
<math>(0)(1,1)(2,2)(3,2)(1,1)=\psi(\Omega_2+\Omega)</math>
 
<math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)=\psi(\Omega_2+\psi_1(0))</math>
 
<math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2)=\psi(\Omega_2+\psi_1(\psi_1(0)))</math>
 
<math>(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2)=\psi(\Omega_2+\psi_1(\Omega_2))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,0)=\psi(\Omega_2+\psi_1(\Omega_2)\times\omega)</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)=\psi(\Omega_2+\psi_1(\Omega_2)^2)</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2)^\omega)</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)=\psi(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)})</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)=\psi(\Omega_2+\psi_1(\Omega_2+1))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2+\omega))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)\times\omega))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^\omega))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)}))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+1)))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\omega)))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2)=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2))))</math>
 
<math>(0)(1,1)(2,2)(3,2)(2,2)(3,2)=\psi(\Omega_2\times2)</math>
 
<math>(0)(1,1)(2,2)(3,2)(3,0)=\psi(\Omega_2\times\omega)</math>
 
<math>(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2)=\psi(\Omega_2\times\psi_1(\Omega_2))</math>
 
<math>(0)(1,1)(2,2)(3,2)(3,2)=\psi(\Omega_2^2)</math>
 
<math>(0)(1,1)(2,2)(3,2)(4,0)=\psi(\Omega_2^\omega)</math>
 
<math>(0)(1,1)(2,2)(3,2)(4,2)=\psi(\Omega_2^{\Omega_2})</math>
 
<math>(0)(1,1)(2,2)(3,3)=\psi(\psi_2(0))</math>
 
<math>(0)(1,1)(2,2)(3,3)(4,3)=\psi(\Omega_3)</math>
 
<math>(0)(1,1)(2,2)(3,3)(4,4)=\psi(\psi_3(0))</math>
 
<math>(0)(1,1,1)=(0)(1,1)(2,2)(3,3)\cdots=\psi(\Omega_\omega)</math>


==== 3:三行BMS (0)(1,1,1)~(0)(1,1,1)(2,1,0) ====
==== 3:三行BMS (0)(1,1,1)~(0)(1,1,1)(2,1,0) ====

2025年7月9日 (三) 11:16的版本

目前使用的OCF为M型,后续补充BOCF

1:单行BMS(PrSS)

=0

(0)=1

(0)(0)=2

(0)(0)(0)=3

(0)(1)=(0)(0)(0)(0)(0)...=ω

(0)(1)(0)=ω+1

(0)(1)(0)(0)=ω+2

(0)(1)(0)(1)=ω×2

(0)(1)(0)(1)(0)(1)=ω×3

(0)(1)(1)=(0)(1)(0)(1)(0)(1)...=ω2

(0)(1)(1)(0)=ω2+1

(0)(1)(1)(0)(1)=ω2+ω

(0)(1)(1)(0)(1)(0)(1)=ω2+ω×2

(0)(1)(1)(0)(1)(1)=ω2×2

(0)(1)(1)(0)(1)(1)(0)(1)=ω2×2+ω

(0)(1)(1)(0)(1)(1)(0)(1)(1)=ω2×3

(0)(1)(1)(1)=ω3

(0)(1)(1)(1)(1)=ω4

(0)(1)(2)=(0)(1)(1)(1)(1)...=ωω

(0)(1)(2)(0)(1)(2)=ωω×2

(0)(1)(2)(1)=ωω+1

(0)(1)(2)(1)(1)=ωω+2

(0)(1)(2)(1)(1)(1)=ωω+3

(0)(1)(2)(1)(2)=ωω×2

(0)(1)(2)(1)(2)(1)(2)=ωω×3

(0)(1)(2)(2)=ωω2

(0)(1)(2)(2)(1)=ωω2+1

(0)(1)(2)(2)(1)(2)=ωω2+ω

(0)(1)(2)(2)(1)(2)(2)=ωω2×2

(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)=ωω2×3

(0)(1)(2)(2)(2)=ωω3

(0)(1)(2)(2)(2)(2)=ωω4

(0)(1)(2)(3)=(0)(1)(2)(2)(2)(2)...=ωωω

(0)(1)(2)(3)(4)=ωωωω

(0)(1)(2)(3)(4)(5)=ωωωωω

(0)(1,1)=(0)(1)(2)(3)(4)(5)(6)...=ε0

2:双行BMS

BMS Veblen MOCF
(0)(1,1) ε0
(0)(1,1)(0,0) ε0+1
(0)(1,1)(0,0)(1,0) ε0+ω
(0)(1,1)(0,0)(1,1) ε0×2
(0)(1,1)(0,0)(1,1)(0,0)(1,1) ε0×3
(0)(1,1)(1,0) ε0×ω
(0)(1,1)(1,0)(1,0) ε0×ω2
(0)(1,1)(1,0)(2,0) ε0×ωω
(0)(1,1)(1,0)(2,0)(3,0) ε0×ωωω
(0)(1,1)(1,0)(2,1) ε02
(0)(1,1)(1,0)(2,1)(1,0)(2,0) ε02×ω
(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0) ε02×ωω
(0)(1,1)(1,0)(2,1)(1,0)(2,1) ε03
(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1) ε04
(0)(1,1)(1,0)(2,1)(2,0) ε0ω
(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1) ε0ω+1
(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1) ε0ω+2
(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0) ε0ω×2
(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0) ε0ω×3
(0)(1,1)(1,0)(2,1)(2,0)(2,0) ε0ω2
(0)(1,1)(1,0)(2,1)(2,0)(3,0) ε0ωω
(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0) ε0ωωω
(0)(1,1)(1,0)(2,1)(2,0)(3,1) ε0ε0
(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1) ε0ε0ε0
(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1) ε0ε0ε0ε0
(0)(1,1)(1,1) ε1
(0)(1,1)(1,1)(0,0)(1,1)(1,1) ε1×2
(0)(1,1)(1,1)(1,0) ε1×ω
(0)(1,1)(1,1)(1,0)(2,1) ε1×ε0
(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1) ε1×ε02
(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1) ε1×ε0ε0
(0)(1,1)(1,1)(1,0)(2,1)(2,1) ε12
(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0) ε1ω
(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1) ε1ε0
(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1) ε1ε1
(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1) ε1ε1ε1
(0)(1,1)(1,1)(1,1) ε2
(0)(1,1)(1,1)(1,1)(1,1) ε3
(0)(1,1)(2,0) εω
(0)(1,1)(2,0)(1,0) εω×ω
(0)(1,1)(2,0)(1,0)(2,1) εω×ε0
(0)(1,1)(2,0)(1,0)(2,1)(2,1) εω×ε1
(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1) εω×ε2
(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1) εω×ε3
(0)(1,1)(2,0)(1,0)(2,1)(3,0) εω2
(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0) εωεω
(0)(1,1)(2,0)(1,1) εω+1
(0)(1,1)(2,0)(1,1)(1,1) εω+2
(0)(1,1)(2,0)(1,1)(1,1)(1,1) εω+3
(0)(1,1)(2,0)(1,1)(2,0) εω×2
(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0) εω×3
(0)(1,1)(2,0)(2,0) εω2
(0)(1,1)(2,0)(2,0)(2,0) εω3
(0)(1,1)(2,0)(3,0) εωω
(0)(1,1)(2,0)(3,0)(4,0) εωωω
(0)(1,1)(2,0)(3,1) εε0
(0)(1,1)(2,0)(3,1)(1,1) εε0+1
(0)(1,1)(2,0)(3,1)(3,1) εε1
(0)(1,1)(2,0)(3,1)(4,0) εεω
(0)(1,1)(2,0)(3,1)(4,0)(5,1) εεε0
(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1) εεεε0
(0)(1,1)(2,1) ζ0
(0)(1,1)(2,1)(1,0)(2,1)(3,1) ζ02
(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1) ζ0ζ0
(0)(1,1)(2,1)(1,1) εζ0+1
(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1) εζ0+12
(0)(1,1)(2,1)(1,1)(1,1) εζ0+2
(0)(1,1)(2,1)(1,1)(2,0) εζ0+ω
(0)(1,1)(2,1)(1,1)(2,0)(3,1) εζ0+ε0
(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1) εζ0×2
(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1) εεζ0+1
(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1) εεεζ+1
(0)(1,1)(2,1)(1,1)(2,1) ζ1
(0)(1,1)(2,1)(1,1)(2,1)(1,1) εζ1+1
(0)(1,1)(2,1)(1,1)(2,0) εζ1+ω
(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1) ζ2
(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1) ζ3
(0)(1,1)(2,1)(2,0) ζω
(0)(1,1)(2,1)(2,0)(2,0) ζω2
(0)(1,1)(2,1)(2,0)(3,1) ζε0
(0)(1,1)(2,1)(2,0)(3,1)(4,1) ζζ0
(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1) ζζζ0
(0)(1,1)(2,1)(2,1) η0
(0)(1,1)(2,1)(2,1)(1,1) εη0+1
(0)(1,1)(2,1)(2,1)(1,1)(2,1) ζη0+1
(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1) ζζη0+1
(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1) η1
(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1) η2
(0)(1,1)(2,1)(2,1)(2,0) ηω
(0)(1,1)(2,1)(2,1)(2,1) φ(4,0) ψ(Ω3)
(0)(1,1)(2,1)(3,0) φ(ω,0) ψ(Ωω)
(0)(1,1)(2,1)(3,0)(1,1) φ(1,φ(ω,0)+1) ψ(Ωω+1)
(0)(1,1)(2,1)(3,0)(1,1)(2,1) φ(2,φ(ω,0)+1) ψ(Ωω+Ω)
(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1) φ(3,φ(ω,0)+1) ψ(Ωω+Ω2)
(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0) φ(ω,1) ψ(Ωω×2)
(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0) φ(ω,2) ψ(Ωω×3)
(0)(1,1)(2,1)(3,0)(2,0) φ(ω,ω) ψ(Ωω×ω)
(0)(1,1)(2,1)(3,0)(2,1) φ(ω+1,0) ψ(Ωω+1)
(0)(1,1)(2,1)(3,0)(2,1)(2,1) φ(ω+2,0) ψ(Ωω+2)
(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1) φ(ω+3,0) ψ(Ωω+3)
(0)(1,1)(2,1)(3,0)(2,1)(3,0) φ(ω×2,0) ψ(Ωω×2)
(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0) φ(ω×3,0) ψ(Ωω×3)
(0)(1,1)(2,1)(3,0)(3,0) φ(ω2,0) ψ(Ωω2)
(0)(1,1)(2,1)(3,0)(4,1) φ(φ(1,0),0) ψ(Ωψ(0))
(0)(1,1)(2,1)(3,0)(4,1)(5,1) φ(φ(2,0),0) ψ(Ωψ(Ω))
(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0) φ(φ(ω,0),0) ψ(Ωψ(Ωω))
(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0) φ(φ(φ(ω,0),0),0) ψ(Ωψ(Ωψ(Ωω)))
(0)(1,1)(2,1)(3,1) φ(1,0,0)=Γ0 ψ(ΩΩ)
(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1) φ(1,0,1)=Γ1 ψ(ΩΩ×2)
(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1) φ(1,0,2)=Γ2 ψ(ΩΩ×3)
(0)(1,1)(2,1)(3,1)(2,0) φ(1,0,ω)=Γω ψ(ΩΩ×ω)
(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1) φ(1,0,φ(1,0,0))=ΓΓ0 ψ(ΩΩ×ψ(ΩΩ))
(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1) φ(1,0,φ(1,0,φ(1,0,0)))=ΓΓΓ0 ψ(ΩΩ×ψ(ΩΩ×ψ(ΩΩ)))
(0)(1,1)(2,1)(3,1)(2,1) φ(1,1,0) ψ(ΩΩ+1)
(0)(1,1)(2,1)(3,1)(2,1)(2,1) φ(1,2,0) ψ(ΩΩ+2)
(0)(1,1)(2,1)(3,1)(2,1)(3,0) φ(1,ω,0) ψ(ΩΩ+ω)
(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0) φ(1,φ(1,ω,0),0) ψ(ΩΩ+ψ(ΩΩ+ω))
(0)(1,1)(2,1)(3,1)(2,1)(3,1) ψ(2,0,0) ψ(ΩΩ×2)
(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1) ψ(3,0,0) ψ(ΩΩ×3)
(0)(1,1)(2,1)(3,1)(3,0) φ(ω,0,0) ψ(ΩΩ×ω)
(0)(1,1)(2,1)(3,1)(3,1) φ(1,0,0,0) ψ(ΩΩ2)
(0)(1,1)(2,1)(3,1)(3,1)(3,1) φ(1,0,0,0,0) ψ(ΩΩ3)
BMS MOCF
(0)(1,1)(2,1)(3,1)(4,0) ψ(ΩΩω)
(0)(1,1)(2,1)(3,1)(4,0)(5,1) ψ(ΩΩψ(0))
(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1) ψ(ΩΩψ(Ω))
(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1) ψ(ΩΩψ(ΩΩ))
(0)(1,1)(2,1)(3,1)(4,1) ψ(ΩΩΩ)
(0)(1,1)(2,1)(3,1)(4,1)(5,1) ψ(ΩΩΩΩ)
(0)(1,1)(2,2) ψ(ψ1(0))
(0)(1,1)(2,2)(1,1) ψ(ψ1(0)+1)
(0)(1,1)(2,2)(1,1)(2,1) ψ(ψ1(0)+Ω)
(0)(1,1)(2,2)(1,1)(2,1)(3,1) ψ(ψ1(0)+ΩΩ)
(0)(1,1)(2,2)(1,1)(2,2) ψ(ψ1(0)×2)
(0)(1,1)(2,2)(2,0) ψ(ψ1(0)×ω)
(0)(1,1)(2,2)(2,1) ψ(ψ1(0)×Ω)
(0)(1,1)(2,2)(2,1)(3,0) ψ(ψ1(0)×Ωω)
(0)(1,1)(2,2)(2,1)(3,1) ψ(ψ1(0)×ΩΩ)
(0)(1,1)(2,2)(2,1)(3,2) ψ(ψ1(0)2)
(0)(1,1)(2,2)(2,1)(3,2)(3,0) ψ(ψ1(0)ω)
(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2) ψ(ψ1(0)ψ1(0))
(0)(1,1)(2,2)(2,2) ψ(ψ1(1))
(0)(1,1)(2,2)(3,0) ψ(ψ1(ω))
(0)(1,1)(2,2)(3,1)(4,2) ψ(ψ1(ψ1(0)))
(0)(1,1)(2,2)(3,2) ψ(Ω2)
(0)(1,1)(2,2)(3,2)(1,1) ψ(Ω2+Ω)
(0)(1,1)(2,2)(3,2)(1,1)(2,2) ψ(Ω2+ψ1(0))
(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2) ψ(Ω2+ψ1(ψ1(0)))
(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2) ψ(Ω2+ψ1(Ω2))
(0)(1,1)(2,2)(3,2)(2,0) ψ(Ω2+ψ1(Ω2)×ω)
(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2) ψ(Ω2+ψ1(Ω2)2)
(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0) ψ(Ω2+ψ1(Ω2)ω)
(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2) ψ(Ω2+ψ1(Ω2)ψ1(Ω2))
(0)(1,1)(2,2)(3,2)(2,2) ψ(Ω2+ψ1(Ω2+1))
(0)(1,1)(2,2)(3,2)(2,2)(3,0) ψ(Ω2+ψ1(Ω2+ω))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2) ψ(Ω2+ψ1(Ω2+ψ1(Ω2)))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0) ψ(Ω2+ψ1(Ω2+ψ1(Ω2)×ω))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0) ψ(Ω2+ψ1(Ω2+ψ1(Ω2)ω))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2) ψ(Ω2+ψ1(Ω2+ψ1(Ω2)ψ1(Ω2)))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2) ψ(Ω2+ψ1(Ω2+ψ1(Ω2+1)))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0) ψ(Ω2+ψ1(Ω2+ψ1(Ω2+ω)))
(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2) ψ(Ω2+ψ1(Ω2+ψ1(Ω2+ψ1(Ω2))))
(0)(1,1)(2,2)(3,2)(2,2)(3,2) ψ(Ω2×2)
(0)(1,1)(2,2)(3,2)(3,0) ψ(Ω2×ω)
(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2) ψ(Ω2×ψ1(Ω2))
(0)(1,1)(2,2)(3,2)(3,2) ψ(Ω22)
(0)(1,1)(2,2)(3,2)(4,0) ψ(Ω2ω)
(0)(1,1)(2,2)(3,2)(4,2) ψ(Ω2Ω2)
(0)(1,1)(2,2)(3,3) ψ(ψ2(0))
(0)(1,1)(2,2)(3,3)(4,3) ψ(Ω3)
(0)(1,1)(2,2)(3,3)(4,4) ψ(ψ3(0))
(0)(1,1,1)=(0)(1,1)(2,2)(3,3) ψ(Ωω)

3:三行BMS (0)(1,1,1)~(0)(1,1,1)(2,1,0)

三行之后BMS的行为复杂度急剧上升,因此部分节点的分析可能不会较为详细。

BMS MOCF
(0)(1,1,1) ψ(Ωω)
(0)(1,1,1)(1,1,0) ψ(Ωω+1)
(0)(1,1,1)(1,1,0)(2,0,0) ψ(Ωω+ω)
(0)(1,1,1)(1,1,0)(2,1,0) ψ(Ωω+Ω)
(0)(1,1,1)(1,1,0)(2,2,0) ψ(Ωω+ψ1(0))
(0)(1,1,1)(1,1,0)(2,2,0)(2,2,0) ψ(Ωω+ψ1(1))
(0)(1,1,1)(1,1,0)(2,2,0)(3,0,0) ψ(Ωω+ψ1(ω))
(0)(1,1,1)(1,1,0)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω+ψ1(ψ1(0)))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0) ψ(Ωω+ψ1(Ω2))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,0,0) ψ(Ωω+ψ1(Ω2)×ω)
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,1,0) ψ(Ωω+ψ1(Ω2)ω)
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0) ψ(Ωω+ψ1(Ω2+1))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,0,0) ψ(Ωω+ψ1(Ω2+ω))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω+ψ1(Ω2+ψ1(0)))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(2,2,0)(3,2,0) ψ(Ωω+ψ1(Ω2×2))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,0,0) ψ(Ωω+ψ1(Ω2×ω))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(3,2,0) ψ(Ωω+ψ1(Ω22))
(0)(1,1,1)(1,1,0)(2,2,0)(3,2,0)(4,2,0) ψ(Ωω+ψ1(Ω2Ω2))
(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0) ψ(Ωω+ψ1(ψ2(0)))
(0)(1,1,1)(1,1,0)(2,2,0)(3,3,0)(4,4,0) ψ(Ωω+ψ1(ψ3(0)))
(0)(1,1,1)(1,1,0)(2,2,1) ψ(Ωω+ψ1(Ωω))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0) ψ(Ωω+ψ1(Ωω+1))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,0,0) ψ(Ωω+ψ1(Ωω+ω))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω+ψ1(Ωω+ψ1(0)))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,0)(5,3,0) ψ(Ωω+ψ1(Ωω+ψ1(ψ2(0))))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,1,0)(4,2,1) ψ(Ωω+ψ1(Ωω+ψ1(Ωω)))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,2,0) ψ(Ωω+Ω2)
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,0) ψ(Ωω+ψ2(0))
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,3,0) ψ(Ωω+Ω3)
(0)(1,1,1)(1,1,0)(2,2,1)(2,2,0)(3,3,1)(3,3,0)(4,4,0) ψ(Ωω+ψ3(0))
(0)(1,1,1)(1,1,1) ψ(Ωω×2)
(0)(1,1,1)(2,0,0) ψ(Ωω×ω)
(0)(1,1,1)(2,1,0) ψ(Ωω×Ω)

4: (0)(1,1,1)(2,1,0)~(0)(1,1,1)(2,1,0)(1,1,1)

这一部分涉及到提升效应

BMS MOCF
(0)(1,1,1)(2,1,0) ψ(Ωω×Ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1) ψ(Ωω×Ω+ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,0,0) ψ(Ωω×Ω+ψ1(Ωω×ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0) ψ(Ωω×Ω+ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0) ψ(Ωω×Ω+ψ1(Ωω×Ω+1))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,0) ψ(Ωω×Ω+ψ1(Ωω×Ω+ψ1(0)))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,1,0)(4,2,1)(5,1,0) ψ(Ωω×Ω+ψ1(Ωω×Ω+ψ1(Ωω×Ω)))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,2,0) ψ(Ωω×Ω+Ω2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,0) ψ(Ωω×Ω+ψ2(0))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,0)(3,3,1)(4,1,0)(3,3,0)(4,3,0) ψ(Ωω×Ω+Ω3)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1) ψ(Ωω×Ω+Ωω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(1,1,0)(2,2,1)(3,1,0)(2,2,1) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω+Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,0,0) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω+Ωω)×ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0) ψ(Ωω×Ω+Ωω+ψ1(Ωω×Ω+Ωω+1))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,0)(3,2,0) ψ(Ωω×Ω+Ωω+Ω2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(2,2,1) ψ(Ωω×Ω+Ωω×2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,0,0) ψ(Ωω×Ω+Ωω×ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(2,2,1)(3,1,0) ψ(Ωω×Ω×2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(3,0,0) ψ(Ωω×Ω×ω)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,0) ψ(Ωω×ψ1(0))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1) ψ(Ωω×ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0) ψ(Ωω×ψ1(Ωω×Ω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1) ψ(Ωω×ψ1(Ωω×Ω+Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(4,2,1)(5,1,0) ψ(Ωω×ψ1(Ωω×Ω×2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,1,0)(4,2,1)(5,1,0)(6,2,1) ψ(Ωω×ψ1(Ωω×ψ1(Ωω))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0) ψ(Ωω×Ω2)
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,2,0)(5,3,0) ψ(Ωω×ψ2(0))
(0)(1,1,1)(2,1,0)(1,1,0)(2,2,1)(3,2,0)(2,2,0)(3,3,1)(4,3,0) ψ(Ωω×Ω3)
(0)(1,1,1)(2,1,0)(1,1,1) ψ(Ωω2)