打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

BMS分析:修订间差异

来自Googology Wiki
Apocalypse留言 | 贡献
Apocalypse留言 | 贡献
无编辑摘要
第77行: 第77行:
<math>(0)(1,1)=\varepsilon_0</math>
<math>(0)(1,1)=\varepsilon_0</math>


<math>(0)(1,1)(0)=\varepsilon_0+1</math>
<math>(0)(1,1)(0,0)=\varepsilon_0+1</math>


<math>(0)(1,1)(0)(1)=\varepsilon_0+\omega</math>
<math>(0)(1,1)(0,0)(1,0)=\varepsilon_0+\omega</math>


<math>(0)(1,1)(0)(1,1)=\varepsilon_0\times2</math>
<math>(0)(1,1)(0,0)(1,1)=\varepsilon_0\times2</math>


<math>(0)(1,1)(0)(1,1)(0)(1,1)=\varepsilon_0\times3</math>
<math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)=\varepsilon_0\times3</math>


<math>(0)(1,1)(1)=\varepsilon_0\times\omega</math>
<math>(0)(1,1)(1,0)=\varepsilon_0\times\omega</math>


<math>(0)(1,1)(1)(1)=\varepsilon_0\times\omega^2</math>
<math>(0)(1,1)(1,0)(1,0)=\varepsilon_0\times\omega^2</math>


<math>(0)(1,1)(1)(2)=\varepsilon_0\times\omega^\omega</math>
<math>(0)(1,1)(1,0)(2,0)=\varepsilon_0\times\omega^\omega</math>


<math>(0)(1,1)(1)(2)(3)=\varepsilon_0\times\omega^{\omega^\omega}</math>
<math>(0)(1,1)(1,0)(2,0)(3,0)=\varepsilon_0\times\omega^{\omega^\omega}</math>


<math>(0)(1,1)(1)(2,1)=\varepsilon_0^2</math>
<math>(0)(1,1)(1,0)(2,1)=\varepsilon_0^2</math>


<math>(0)(1,1)(1)(2,1)(1)(2)=\varepsilon_0^2\times\omega</math>
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)=\varepsilon_0^2\times\omega</math>


<math>(0)(1,1)(1)(2,1)(1)(2)(3)=\varepsilon_0^2\times\omega^\omega</math>
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)=\varepsilon_0^2\times\omega^\omega</math>


<math>(0)(1,1)(1)(2,1)(1)(2,1)=\varepsilon_0^3</math>
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^3</math>


<math>(0)(1,1)(1)(2,1)(1)(2,1)(1)(2,1)=\varepsilon_0^4</math>
<math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^4</math>


<math>(0)(1,1)(1)(2,1)(2)=\varepsilon_0^\omega</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)=\varepsilon_0^\omega</math>


<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)=\varepsilon_0^{\omega+1}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)=\varepsilon_0^{\omega+1}</math>


<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)(1)(2,1)=\varepsilon_0^{\omega+2}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^{\omega+2}</math>


<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)(2)=\varepsilon_0^{\omega\times2}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times2}</math>


<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)(2)(1)(2,1)(2)=\varepsilon_0^{\omega\times3}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times3}</math>


<math>(0)(1,1)(1)(2,1)(2)(2)=\varepsilon_0^{\omega^2}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)=\varepsilon_0^{\omega^2}</math>


<math>(0)(1,1)(1)(2,1)(2)(3)=\varepsilon_0^{\omega^\omega}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)=\varepsilon_0^{\omega^\omega}</math>


<math>(0)(1,1)(1)(2,1)(2)(3)(4)=\varepsilon_0^{\omega^{\omega^\omega}}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)=\varepsilon_0^{\omega^{\omega^\omega}}</math>


<math>(0)(1,1)(1)(2,1)(2)(3,1)=\varepsilon_0^{\varepsilon_0}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_0^{\varepsilon_0}</math>


<math>(0)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math>


<math>(0)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)(4)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math>
<math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math>


<math>(0)(1,1)(1,1)=\varepsilon_1</math>
<math>(0)(1,1)(1,1)=\varepsilon_1</math>


<math>(0)(1,1)(1,1)(0)(1,1)(1,1)=\varepsilon_1\times2</math>
<math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)=\varepsilon_1\times2</math>


<math>(0)(1,1)(1,1)(1)=\varepsilon_1\times\omega</math>
<math>(0)(1,1)(1,1)(1,0)=\varepsilon_1\times\omega</math>


<math>(0)(1,1)(1,1)(1)(2,1)=\varepsilon_1\times\varepsilon_0</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)=\varepsilon_1\times\varepsilon_0</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2)(3,1)=\varepsilon_1\times\varepsilon_0^2</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_1\times\varepsilon_0^2</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2,1)=\varepsilon_1^2</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)=\varepsilon_1^2</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)=\varepsilon_1^\omega</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)=\varepsilon_1^\omega</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)=\varepsilon_1^{\varepsilon_0}</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)=\varepsilon_1^{\varepsilon_0}</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math>


<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)(3)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math>
<math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math>


<math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math>
<math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math>
第151行: 第151行:
<math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math>
<math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math>


<math>(0)(1,1)(2)=\varepsilon_\omega</math>
<math>(0)(1,1)(2,0)=\varepsilon_\omega</math>


<math>(0)(1,1)(2)(1)=\varepsilon_\omega\times\omega</math>
<math>(0)(1,1)(2,0)(1,0)=\varepsilon_\omega\times\omega</math>


<math>(0)(1,1)(2)(1)(2,1)=\varepsilon_\omega\times\varepsilon_0</math>
<math>(0)(1,1)(2,0)(1,0)(2,1)=\varepsilon_\omega\times\varepsilon_0</math>


<math>(0)(1,1)(2)(1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math>
<math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math>


<math>(0)(1,1)(2)(1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math>
<math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math>


<math>(0)(1,1)(2)(1)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math>
<math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math>


<math>(0)(1,1)(2)(1)(2,1)(3)=\varepsilon_\omega^2</math>
<math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)=\varepsilon_\omega^2</math>


<math>(0)(1,1)(2)(1)(2,1)(3)(2)(3,1)(4)=\varepsilon_\omega^{\varepsilon_\omega}</math>
<math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)=\varepsilon_\omega^{\varepsilon_\omega}</math>


<math>(0)(1,1)(2)(1,1)=\varepsilon_{\omega+1}</math>
<math>(0)(1,1)(2,0)(1,1)=\varepsilon_{\omega+1}</math>


<math>(0)(1,1)(2)(1,1)(1,1)=\varepsilon_{\omega+2}</math>
<math>(0)(1,1)(2,0)(1,1)(1,1)=\varepsilon_{\omega+2}</math>


<math>(0)(1,1)(2)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math>
<math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math>


<math>(0)(1,1)(2)(1,1)(2)=\varepsilon_{\omega\times2}</math>
<math>(0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times2}</math>


<math>(0)(1,1)(2)(1,1)(2)(1,1)(2)=\varepsilon_{\omega\times3}</math>
<math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times3}</math>


<math>(0)(1,1)(2)(2)=\varepsilon_{\omega^2}</math>
<math>(0)(1,1)(2,0)(2,0)=\varepsilon_{\omega^2}</math>


<math>(0)(1,1)(2)(2)(2)=\varepsilon_{\omega^3}</math>
<math>(0)(1,1)(2,0)(2,0)(2,0)=\varepsilon_{\omega^3}</math>


<math>(0)(1,1)(2)(3)=\varepsilon_{\omega^\omega}</math>
<math>(0)(1,1)(2,0)(3,0)=\varepsilon_{\omega^\omega}</math>


<math>(0)(1,1)(2)(3)(4)=\varepsilon_{\omega^{\omega^\omega}}</math>
<math>(0)(1,1)(2,0)(3,0)(4)=\varepsilon_{\omega^{\omega^\omega}}</math>


<math>(0)(1,1)(2)(3,1)=\varepsilon_{\varepsilon_0}</math>
<math>(0)(1,1)(2,0)(3,1)=\varepsilon_{\varepsilon_0}</math>


<math>(0)(1,1)(2)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math>
<math>(0)(1,1)(2,0)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math>


<math>(0)(1,1)(2)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math>
<math>(0)(1,1)(2,0)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math>


<math>(0)(1,1)(2)(3,1)(4)=\varepsilon_{\varepsilon_\omega}</math>
<math>(0)(1,1)(2,0)(3,1)(4,0)=\varepsilon_{\varepsilon_\omega}</math>


<math>(0)(1,1)(2)(3,1)(4)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
<math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math>


<math>(0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math>
<math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math>


<math>(0)(1,1)(2,1)=\zeta_0</math>
<math>(0)(1,1)(2,1)=\zeta_0</math>


<math>(0)(1,1)(2,1)(1)(2,1)(3,1)=\zeta_0^2</math>
<math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)=\zeta_0^2</math>


<math>(0)(1,1)(2,1)(1)(2,1)(3,1)(2)(3,1)(4,1)=\zeta_0^{\zeta_0}</math>
<math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)=\zeta_0^{\zeta_0}</math>


<math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math>
<math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math>


<math>(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math>
<math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math>


<math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math>
<math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math>


<math>(0)(1,1)(2,1)(1,1)(2)=\varepsilon_{\zeta_0+\omega}</math>
<math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_0+\omega}</math>


<math>(0)(1,1)(2,1)(1,1)(2)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math>
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math>


<math>(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math>
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math>


<math>(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math>
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math>


<math>(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math>
<math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math>


<math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math>
<math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math>
第223行: 第223行:
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math>
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math>


<math>(0)(1,1)(2,1)(1,1)(2)=\varepsilon_{\zeta_1+\omega}</math>
<math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_1+\omega}</math>


<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math>
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math>
第229行: 第229行:
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math>
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math>


<math>(0)(1,1)(2,1)(2)=\zeta_\omega</math>
<math>(0)(1,1)(2,1)(2,0)=\zeta_\omega</math>


<math>(0)(1,1)(2,1)(2)(2)=\zeta_{\omega^2}</math>
<math>(0)(1,1)(2,1)(2,0)(2,0)=\zeta_{\omega^2}</math>


<math>(0)(1,1)(2,1)(2)(3,1)=\zeta_{\varepsilon_0}</math>
<math>(0)(1,1)(2,1)(2,0)(3,1)=\zeta_{\varepsilon_0}</math>


<math>(0)(1,1)(2,1)(2)(3,1)(4,1)=\zeta_{\zeta_0}</math>
<math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)=\zeta_{\zeta_0}</math>


<math>(0)(1,1)(2,1)(2)(3,1)(4,1)(4)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math>
<math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math>


<math>(0)(1,1)(2,1)(2,1)=\eta_0</math>
<math>(0)(1,1)(2,1)(2,1)=\eta_0</math>
第245行: 第245行:
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math>
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math>


<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math>
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math>


<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math>
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math>
第251行: 第251行:
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math>
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math>


<math>(0)(1,1)(2,1)(2,1)(2)=\eta_\omega</math>
<math>(0)(1,1)(2,1)(2,1)(2,0)=\eta_\omega</math>


<math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math>
<math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math>


<math>(0)(1,1)(2,1)(3)=\varphi(\omega,0)=\psi(\Omega^\omega)</math>
<math>(0)(1,1)(2,1)(3,0)=\varphi(\omega,0)=\psi(\Omega^\omega)</math>


<math>(0)(1,1)(2,1)(3)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math>
<math>(0)(1,1)(2,1)(3,0)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math>


<math>(0)(1,1)(2,1)(3)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math>
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math>


<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math>
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math>


<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(3)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math>
<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(3,0)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math>


<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(3)(1,1)(2,1)(3)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math>
<math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math>


<math>(0)(1,1)(2,1)(3)(2)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math>
<math>(0)(1,1)(2,1)(3,0)(2,0)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math>


<math>(0)(1,1)(2,1)(3)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math>
<math>(0)(1,1)(2,1)(3,0)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math>


<math>(0)(1,1)(2,1)(3)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math>
<math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math>


<math>(0)(1,1)(2,1)(3)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math>
<math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math>


<math>(0)(1,1)(2,1)(3)(2,1)(3)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math>
<math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math>


<math>(0)(1,1)(2,1)(3)(2,1)(3)(2,1)(3)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math>
<math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math>


<math>(0)(1,1)(2,1)(3)(3)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math>
<math>(0)(1,1)(2,1)(3,0)(3,0)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math>


<math>(0)(1,1)(2,1)(3)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math>
<math>(0)(1,1)(2,1)(3,0)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math>


<math>(0)(1,1)(2,1)(3)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math>
<math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math>


<math>(0)(1,1)(2,1)(3)(4,1)(5,1)(6)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math>
<math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math>


<math>(0)(1,1)(2,1)(3)(4,1)(5,1)(6)(7,1)(8,1)(9)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math>
<math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math>


<math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>
<math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math>
第295行: 第295行:
<math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math>
<math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math>


<math>(0)(1,1)(2,1)(3,1)(2)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math>
<math>(0)(1,1)(2,1)(3,1)(2,0)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math>


<math>(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math>
<math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math>


<math>(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)(4)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math>
<math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math>


<math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math>
<math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math>
第305行: 第305行:
<math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math>
<math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math>


<math>(0)(1,1)(2,1)(3,1)(2,1)(3)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math>
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math>


<math>(0)(1,1)(2,1)(3,1)(2,1)(3)(4,1)(5,1)(6,1)(5,1)(6)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math>
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math>


<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math>
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math>
第313行: 第313行:
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math>
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math>


<math>(0)(1,1)(2,1)(3,1)(3)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math>
<math>(0)(1,1)(2,1)(3,1)(3,0)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math>


<math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math>
<math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math>
第319行: 第319行:
<math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math>
<math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math>


<math>(0)(1,1)(2,1)(3,1)(4)=\psi(\Omega^{\Omega^\omega})</math>
<math>(0)(1,1)(2,1)(3,1)(4,0)=\psi(\Omega^{\Omega^\omega})</math>


<math>(0)(1,1)(2,1)(3,1)(4)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math>
<math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math>


<math>(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math>
<math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math>


<math>(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math>
<math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math>


<math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math>
<math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math>

2025年7月9日 (三) 01:10的版本

目前使用的OCF为M型,后续补充BOCF

1:单行BMS(PrSS)

=0

(0)=1

(0)(0)=2

(0)(0)(0)=3

(0)(1)=(0)(0)(0)(0)(0)...=ω

(0)(1)(0)=ω+1

(0)(1)(0)(0)=ω+2

(0)(1)(0)(1)=ω×2

(0)(1)(0)(1)(0)(1)=ω×3

(0)(1)(1)=(0)(1)(0)(1)(0)(1)...=ω2

(0)(1)(1)(0)=ω2+1

(0)(1)(1)(0)(1)=ω2+ω

(0)(1)(1)(0)(1)(0)(1)=ω2+ω×2

(0)(1)(1)(0)(1)(1)=ω2×2

(0)(1)(1)(0)(1)(1)(0)(1)=ω2×2+ω

(0)(1)(1)(0)(1)(1)(0)(1)(1)=ω2×3

(0)(1)(1)(1)=ω3

(0)(1)(1)(1)(1)=ω4

(0)(1)(2)=(0)(1)(1)(1)(1)...=ωω

(0)(1)(2)(0)(1)(2)=ωω×2

(0)(1)(2)(1)=ωω+1

(0)(1)(2)(1)(1)=ωω+2

(0)(1)(2)(1)(1)(1)=ωω+3

(0)(1)(2)(1)(2)=ωω×2

(0)(1)(2)(1)(2)(1)(2)=ωω×3

(0)(1)(2)(2)=ωω2

(0)(1)(2)(2)(1)=ωω2+1

(0)(1)(2)(2)(1)(2)=ωω2+ω

(0)(1)(2)(2)(1)(2)(2)=ωω2×2

(0)(1)(2)(2)(1)(2)(2)(1)(2)(2)=ωω2×3

(0)(1)(2)(2)(2)=ωω3

(0)(1)(2)(2)(2)(2)=ωω4

(0)(1)(2)(3)=(0)(1)(2)(2)(2)(2)...=ωωω

(0)(1)(2)(3)(4)=ωωωω

(0)(1)(2)(3)(4)(5)=ωωωωω

(0)(1,1)=(0)(1)(2)(3)(4)(5)(6)...=ε0

2:双行BMS

(0)(1,1)=ε0

(0)(1,1)(0,0)=ε0+1

(0)(1,1)(0,0)(1,0)=ε0+ω

(0)(1,1)(0,0)(1,1)=ε0×2

(0)(1,1)(0,0)(1,1)(0,0)(1,1)=ε0×3

(0)(1,1)(1,0)=ε0×ω

(0)(1,1)(1,0)(1,0)=ε0×ω2

(0)(1,1)(1,0)(2,0)=ε0×ωω

(0)(1,1)(1,0)(2,0)(3,0)=ε0×ωωω

(0)(1,1)(1,0)(2,1)=ε02

(0)(1,1)(1,0)(2,1)(1,0)(2,0)=ε02×ω

(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)=ε02×ωω

(0)(1,1)(1,0)(2,1)(1,0)(2,1)=ε03

(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)=ε04

(0)(1,1)(1,0)(2,1)(2,0)=ε0ω

(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)=ε0ω+1

(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)=ε0ω+2

(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=ε0ω×2

(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=ε0ω×3

(0)(1,1)(1,0)(2,1)(2,0)(2,0)=ε0ω2

(0)(1,1)(1,0)(2,1)(2,0)(3,0)=ε0ωω

(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)=ε0ωωω

(0)(1,1)(1,0)(2,1)(2,0)(3,1)=ε0ε0

(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=ε0ε0ε0

(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)=ε0ε0ε0ε0

(0)(1,1)(1,1)=ε1

(0)(1,1)(1,1)(0,0)(1,1)(1,1)=ε1×2

(0)(1,1)(1,1)(1,0)=ε1×ω

(0)(1,1)(1,1)(1,0)(2,1)=ε1×ε0

(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)=ε1×ε02

(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=ε1×ε0ε0

(0)(1,1)(1,1)(1,0)(2,1)(2,1)=ε12

(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)=ε1ω

(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)=ε1ε0

(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)=ε1ε1

(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)=ε1ε1ε1

(0)(1,1)(1,1)(1,1)=ε2

(0)(1,1)(1,1)(1,1)(1,1)=ε3

(0)(1,1)(2,0)=εω

(0)(1,1)(2,0)(1,0)=εω×ω

(0)(1,1)(2,0)(1,0)(2,1)=εω×ε0

(0)(1,1)(2,0)(1,0)(2,1)(2,1)=εω×ε1

(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)=εω×ε2

(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)=εω×ε3

(0)(1,1)(2,0)(1,0)(2,1)(3,0)=εω2

(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)=εωεω

(0)(1,1)(2,0)(1,1)=εω+1

(0)(1,1)(2,0)(1,1)(1,1)=εω+2

(0)(1,1)(2,0)(1,1)(1,1)(1,1)=εω+3

(0)(1,1)(2,0)(1,1)(2,0)=εω×2

(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)=εω×3

(0)(1,1)(2,0)(2,0)=εω2

(0)(1,1)(2,0)(2,0)(2,0)=εω3

(0)(1,1)(2,0)(3,0)=εωω

(0)(1,1)(2,0)(3,0)(4)=εωωω

(0)(1,1)(2,0)(3,1)=εε0

(0)(1,1)(2,0)(3,1)(1,1)=εε0+1

(0)(1,1)(2,0)(3,1)(3,1)=εε1

(0)(1,1)(2,0)(3,1)(4,0)=εεω

(0)(1,1)(2,0)(3,1)(4,0)(5,1)=εεε0

(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)=εεεε0

(0)(1,1)(2,1)=ζ0

(0)(1,1)(2,1)(1,0)(2,1)(3,1)=ζ02

(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)=ζ0ζ0

(0)(1,1)(2,1)(1,1)=εζ0+1

(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)=εζ0+12

(0)(1,1)(2,1)(1,1)(1,1)=εζ0+2

(0)(1,1)(2,1)(1,1)(2,0)=εζ0+ω

(0)(1,1)(2,1)(1,1)(2,0)(3,1)=εζ0+ε0

(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)=εζ0×2

(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)=εεζ0+1

(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)=εεεζ+1

(0)(1,1)(2,1)(1,1)(2,1)=ζ1

(0)(1,1)(2,1)(1,1)(2,1)(1,1)=εζ1+1

(0)(1,1)(2,1)(1,1)(2,0)=εζ1+ω

(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=ζ2

(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=ζ3

(0)(1,1)(2,1)(2,0)=ζω

(0)(1,1)(2,1)(2,0)(2,0)=ζω2

(0)(1,1)(2,1)(2,0)(3,1)=ζε0

(0)(1,1)(2,1)(2,0)(3,1)(4,1)=ζζ0

(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)=ζζζ0

(0)(1,1)(2,1)(2,1)=η0

(0)(1,1)(2,1)(2,1)(1,1)=εη0+1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)=ζη0+1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)=ζζη0+1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=η1

(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=η2

(0)(1,1)(2,1)(2,1)(2,0)=ηω

(0)(1,1)(2,1)(2,1)(2,1)=φ(4,0)=ψ(Ω3)

(0)(1,1)(2,1)(3,0)=φ(ω,0)=ψ(Ωω)

(0)(1,1)(2,1)(3,0)(1,1)=φ(1,φ(ω,0)+1)=ψ(Ωω+1)

(0)(1,1)(2,1)(3,0)(1,1)(2,1)=φ(2,φ(ω,0)+1)=ψ(Ωω+Ω)

(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)=φ(3,φ(ω,0)+1)=ψ(Ωω+Ω2)

(0)(1,1)(2,1)(3)(1,1)(2,1)(3,0)=φ(ω,1)=ψ(Ωω×2)

(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=φ(ω,2)=ψ(Ωω×3)

(0)(1,1)(2,1)(3,0)(2,0)=φ(ω,ω)=ψ(Ωω×ω)

(0)(1,1)(2,1)(3,0)(2,1)=φ(ω+1,0)=ψ(Ωω+1)

(0)(1,1)(2,1)(3,0)(2,1)(2,1)=φ(ω+2,0)=ψ(Ωω+2)

(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)=φ(ω+3,0)=ψ(Ωω+3)

(0)(1,1)(2,1)(3,0)(2,1)(3,0)=φ(ω×2,0)=ψ(Ωω×2)

(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)=φ(ω×3,0)=ψ(Ωω×3)

(0)(1,1)(2,1)(3,0)(3,0)=φ(ω2,0)=ψ(Ωω2)

(0)(1,1)(2,1)(3,0)(4,1)=φ(φ(1,0),0)=ψ(Ωψ(0))

(0)(1,1)(2,1)(3,0)(4,1)(5,1)=φ(φ(2,0),0)=ψ(Ωψ(Ω))

(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)=φ(φ(ω,0),0)=ψ(Ωψ(Ωω))

(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)=φ(φ(φ(ω,0),0),0)=ψ(Ωψ(Ωψ(Ωω)))

(0)(1,1)(2,1)(3,1)=φ(1,0,0)=Γ0=ψ(ΩΩ)

(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=φ(1,0,1)=Γ1=ψ(ΩΩ×2)

(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=φ(1,0,2)=Γ2=ψ(ΩΩ×3)

(0)(1,1)(2,1)(3,1)(2,0)=φ(1,0,ω)=Γω=ψ(ΩΩ×ω)

(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)=φ(1,0,φ(1,0,0))=ΓΓ0=ψ(ΩΩ×ψ(ΩΩ))

(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)=φ(1,0,φ(1,0,φ(1,0,0)))=ΓΓΓ0=ψ(ΩΩ×ψ(ΩΩ×ψ(ΩΩ)))

(0)(1,1)(2,1)(3,1)(2,1)=φ(1,1,0)=ψ(ΩΩ+1)

(0)(1,1)(2,1)(3,1)(2,1)(2,1)=φ(1,2,0)=ψ(ΩΩ+2)

(0)(1,1)(2,1)(3,1)(2,1)(3,0)=φ(1,ω,0)=ψ(ΩΩ+ω)

(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)=φ(1,φ(1,ω,0),0)=ψ(ΩΩ+ψ(ΩΩ+ω))

(0)(1,1)(2,1)(3,1)(2,1)(3,1)=ψ(2,0,0)=ψ(ΩΩ×2)

(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=ψ(3,0,0)=ψ(ΩΩ×3)

(0)(1,1)(2,1)(3,1)(3,0)=φ(ω,0,0)=ψ(ΩΩ×ω)

(0)(1,1)(2,1)(3,1)(3,1)=φ(1,0,0,0)=ψ(ΩΩ2)

(0)(1,1)(2,1)(3,1)(3,1)(3,1)=φ(1,0,0,0,0)=ψ(ΩΩ3)

(0)(1,1)(2,1)(3,1)(4,0)=ψ(ΩΩω)

(0)(1,1)(2,1)(3,1)(4,0)(5,1)=ψ(ΩΩψ(0))

(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)=ψ(ΩΩψ(Ω))

(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)=ψ(ΩΩψ(ΩΩ))

(0)(1,1)(2,1)(3,1)(4,1)=ψ(ΩΩΩ)

(0)(1,1)(2,1)(3,1)(4,1)(5,1)=ψ(ΩΩΩΩ)

(0)(1,1)(2,2)=ψ(ψ1(0))

(0)(1,1)(2,2)(1,1)=ψ(ψ1(0)+1)

(0)(1,1)(2,2)(1,1)(2,1)=ψ(ψ1(0)+Ω)

(0)(1,1)(2,2)(1,1)(2,1)(3,1)=ψ(ψ1(0)+ΩΩ)

(0)(1,1)(2,2)(1,1)(2,2)=ψ(ψ1(0)×2)

(0)(1,1)(2,2)(2,0)=ψ(ψ1(0)×ω)

(0)(1,1)(2,2)(2,1)=ψ(ψ1(0)×Ω)

(0)(1,1)(2,2)(2,1)(3,0)=ψ(ψ1(0)×Ωω)

(0)(1,1)(2,2)(2,1)(3,1)=ψ(ψ1(0)×ΩΩ)

(0)(1,1)(2,2)(2,1)(3,2)=ψ(ψ1(0)2)

(0)(1,1)(2,2)(2,1)(3,2)(3,0)=ψ(ψ1(0)ω)

(0)(1,1)(2,2)(2,1)(3,2)(3,1)(4,2)=ψ(ψ1(0)ψ1(0))

(0)(1,1)(2,2)(2,2)=ψ(ψ1(1))

(0)(1,1)(2,2)(3,0)=ψ(ψ1(ω))

(0)(1,1)(2,2)(3,1)(4,2)=ψ(ψ1(ψ1(0)))

(0)(1,1)(2,2)(3,2)=ψ(Ω2)

(0)(1,1)(2,2)(3,2)(1,1)=ψ(Ω2+Ω)

(0)(1,1)(2,2)(3,2)(1,1)(2,2)=ψ(Ω2+ψ1(0))

(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,1)(4,2)=ψ(Ω2+ψ1(ψ1(0)))

(0)(1,1)(2,2)(3,2)(1,1)(2,2)(3,2)=ψ(Ω2+ψ1(Ω2))

(0)(1,1)(2,2)(3,2)(2,0)=ψ(Ω2+ψ1(Ω2)×ω)

(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)=ψ(Ω2+ψ1(Ω2)2)

(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,0)=ψ(Ω2+ψ1(Ω2)ω)

(0)(1,1)(2,2)(3,2)(2,1)(3,2)(4,2)(3,1)(4,2)(5,2)=ψ(Ω2+ψ1(Ω2)ψ1(Ω2))

(0)(1,1)(2,2)(3,2)(2,2)=ψ(Ω2+ψ1(Ω2+1))

(0)(1,1)(2,2)(3,2)(2,2)(3,0)=ψ(Ω2+ψ1(Ω2+ω))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2)))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(3,0)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2)×ω))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,0)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2)ω))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,1)(5,2)(6,2)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2)ψ1(Ω2)))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2+1)))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2+ω)))

(0)(1,1)(2,2)(3,2)(2,2)(3,1)(4,2)(5,2)(4,2)(5,0)(5,1)(6,2)(7,2)=ψ(Ω2+ψ1(Ω2+ψ1(Ω2+ψ1(Ω2))))

(0)(1,1)(2,2)(3,2)(2,2)(3,2)=ψ(Ω2×2)

(0)(1,1)(2,2)(3,2)(3,0)=ψ(Ω2×ω)

(0)(1,1)(2,2)(3,2)(3,1)(4,2)(5,2)=ψ(Ω2×ψ1(Ω2))

(0)(1,1)(2,2)(3,2)(3,2)=ψ(Ω22)

(0)(1,1)(2,2)(3,2)(4,0)=ψ(Ω2ω)

(0)(1,1)(2,2)(3,2)(4,2)=ψ(Ω2Ω2)

(0)(1,1)(2,2)(3,3)=ψ(ψ2(0))

(0)(1,1)(2,2)(3,3)(4,3)=ψ(Ω3)

(0)(1,1)(2,2)(3,3)(4,4)=ψ(ψ3(0))

(0)(1,1,1)=(0)(1,1)(2,2)(3,3)=ψ(Ωω)