BMS分析:修订间差异
来自Googology Wiki
更多操作
Apocalypse(留言 | 贡献) |
Apocalypse(留言 | 贡献) 无编辑摘要 |
||
第77行: | 第77行: | ||
<math>(0)(1,1)=\varepsilon_0</math> | <math>(0)(1,1)=\varepsilon_0</math> | ||
<math>(0)(1,1)(0)=\varepsilon_0+1</math> | <math>(0)(1,1)(0,0)=\varepsilon_0+1</math> | ||
<math>(0)(1,1)(0)(1)=\varepsilon_0+\omega</math> | <math>(0)(1,1)(0,0)(1,0)=\varepsilon_0+\omega</math> | ||
<math>(0)(1,1)(0)(1,1)=\varepsilon_0\times2</math> | <math>(0)(1,1)(0,0)(1,1)=\varepsilon_0\times2</math> | ||
<math>(0)(1,1)(0)(1,1)(0)(1,1)=\varepsilon_0\times3</math> | <math>(0)(1,1)(0,0)(1,1)(0,0)(1,1)=\varepsilon_0\times3</math> | ||
<math>(0)(1,1)(1)=\varepsilon_0\times\omega</math> | <math>(0)(1,1)(1,0)=\varepsilon_0\times\omega</math> | ||
<math>(0)(1,1)(1)(1)=\varepsilon_0\times\omega^2</math> | <math>(0)(1,1)(1,0)(1,0)=\varepsilon_0\times\omega^2</math> | ||
<math>(0)(1,1)(1)(2)=\varepsilon_0\times\omega^\omega</math> | <math>(0)(1,1)(1,0)(2,0)=\varepsilon_0\times\omega^\omega</math> | ||
<math>(0)(1,1)(1)(2)(3)=\varepsilon_0\times\omega^{\omega^\omega}</math> | <math>(0)(1,1)(1,0)(2,0)(3,0)=\varepsilon_0\times\omega^{\omega^\omega}</math> | ||
<math>(0)(1,1)(1)(2,1)=\varepsilon_0^2</math> | <math>(0)(1,1)(1,0)(2,1)=\varepsilon_0^2</math> | ||
<math>(0)(1,1)(1)(2,1)(1)(2)=\varepsilon_0^2\times\omega</math> | <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)=\varepsilon_0^2\times\omega</math> | ||
<math>(0)(1,1)(1)(2,1)(1)(2)(3)=\varepsilon_0^2\times\omega^\omega</math> | <math>(0)(1,1)(1,0)(2,1)(1,0)(2,0)(3,0)=\varepsilon_0^2\times\omega^\omega</math> | ||
<math>(0)(1,1)(1)(2,1)(1)(2,1)=\varepsilon_0^3</math> | <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^3</math> | ||
<math>(0)(1,1)(1)(2,1)(1)(2,1)(1)(2,1)=\varepsilon_0^4</math> | <math>(0)(1,1)(1,0)(2,1)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^4</math> | ||
<math>(0)(1,1)(1)(2,1)(2)=\varepsilon_0^\omega</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)=\varepsilon_0^\omega</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)=\varepsilon_0^{\omega+1}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)=\varepsilon_0^{\omega+1}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)(1)(2,1)=\varepsilon_0^{\omega+2}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(1,0)(2,1)=\varepsilon_0^{\omega+2}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)(2)=\varepsilon_0^{\omega\times2}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times2}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(1)(2,1)(2)(1)(2,1)(2)=\varepsilon_0^{\omega\times3}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)(1,0)(2,1)(2,0)=\varepsilon_0^{\omega\times3}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(2)=\varepsilon_0^{\omega^2}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(2,0)=\varepsilon_0^{\omega^2}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(3)=\varepsilon_0^{\omega^\omega}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)=\varepsilon_0^{\omega^\omega}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(3)(4)=\varepsilon_0^{\omega^{\omega^\omega}}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(3,0)(4,0)=\varepsilon_0^{\omega^{\omega^\omega}}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(3,1)=\varepsilon_0^{\varepsilon_0}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_0^{\varepsilon_0}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}</math> | ||
<math>(0)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)(4)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math> | <math>(0)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)(4,0)(5,1)=\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}</math> | ||
<math>(0)(1,1)(1,1)=\varepsilon_1</math> | <math>(0)(1,1)(1,1)=\varepsilon_1</math> | ||
<math>(0)(1,1)(1,1)(0)(1,1)(1,1)=\varepsilon_1\times2</math> | <math>(0)(1,1)(1,1)(0,0)(1,1)(1,1)=\varepsilon_1\times2</math> | ||
<math>(0)(1,1)(1,1)(1)=\varepsilon_1\times\omega</math> | <math>(0)(1,1)(1,1)(1,0)=\varepsilon_1\times\omega</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)=\varepsilon_1\times\varepsilon_0</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)=\varepsilon_1\times\varepsilon_0</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2)(3,1)=\varepsilon_1\times\varepsilon_0^2</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)=\varepsilon_1\times\varepsilon_0^2</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2)(3,1)(3)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,0)(3,1)(3,0)(4,1)=\varepsilon_1\times\varepsilon_0^{\varepsilon_0}</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2,1)=\varepsilon_1^2</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)=\varepsilon_1^2</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)=\varepsilon_1^\omega</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)=\varepsilon_1^\omega</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)=\varepsilon_1^{\varepsilon_0}</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)=\varepsilon_1^{\varepsilon_0}</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)=\varepsilon_1^{\varepsilon_1}</math> | ||
<math>(0)(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)(3)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math> | <math>(0)(1,1)(1,1)(1,0)(2,1)(2,1)(2,0)(3,1)(3,1)(3,0)(4,1)(4,1)=\varepsilon_1^{\varepsilon_1^{\varepsilon_1}}</math> | ||
<math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math> | <math>(0)(1,1)(1,1)(1,1)=\varepsilon_2</math> | ||
第151行: | 第151行: | ||
<math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math> | <math>(0)(1,1)(1,1)(1,1)(1,1)=\varepsilon_3</math> | ||
<math>(0)(1,1)(2)=\varepsilon_\omega</math> | <math>(0)(1,1)(2,0)=\varepsilon_\omega</math> | ||
<math>(0)(1,1)(2)(1)=\varepsilon_\omega\times\omega</math> | <math>(0)(1,1)(2,0)(1,0)=\varepsilon_\omega\times\omega</math> | ||
<math>(0)(1,1)(2)(1)(2,1)=\varepsilon_\omega\times\varepsilon_0</math> | <math>(0)(1,1)(2,0)(1,0)(2,1)=\varepsilon_\omega\times\varepsilon_0</math> | ||
<math>(0)(1,1)(2)(1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math> | <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_1</math> | ||
<math>(0)(1,1)(2)(1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math> | <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_2</math> | ||
<math>(0)(1,1)(2)(1)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math> | <math>(0)(1,1)(2,0)(1,0)(2,1)(2,1)(2,1)(2,1)=\varepsilon_\omega\times\varepsilon_3</math> | ||
<math>(0)(1,1)(2)(1)(2,1)(3)=\varepsilon_\omega^2</math> | <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)=\varepsilon_\omega^2</math> | ||
<math>(0)(1,1)(2)(1)(2,1)(3)(2)(3,1)(4)=\varepsilon_\omega^{\varepsilon_\omega}</math> | <math>(0)(1,1)(2,0)(1,0)(2,1)(3,0)(2,0)(3,1)(4,0)=\varepsilon_\omega^{\varepsilon_\omega}</math> | ||
<math>(0)(1,1)(2)(1,1)=\varepsilon_{\omega+1}</math> | <math>(0)(1,1)(2,0)(1,1)=\varepsilon_{\omega+1}</math> | ||
<math>(0)(1,1)(2)(1,1)(1,1)=\varepsilon_{\omega+2}</math> | <math>(0)(1,1)(2,0)(1,1)(1,1)=\varepsilon_{\omega+2}</math> | ||
<math>(0)(1,1)(2)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math> | <math>(0)(1,1)(2,0)(1,1)(1,1)(1,1)=\varepsilon_{\omega+3}</math> | ||
<math>(0)(1,1)(2)(1,1)(2)=\varepsilon_{\omega\times2}</math> | <math>(0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times2}</math> | ||
<math>(0)(1,1)(2)(1,1)(2)(1,1)(2)=\varepsilon_{\omega\times3}</math> | <math>(0)(1,1)(2,0)(1,1)(2,0)(1,1)(2,0)=\varepsilon_{\omega\times3}</math> | ||
<math>(0)(1,1)(2)(2)=\varepsilon_{\omega^2}</math> | <math>(0)(1,1)(2,0)(2,0)=\varepsilon_{\omega^2}</math> | ||
<math>(0)(1,1)(2)(2)(2)=\varepsilon_{\omega^3}</math> | <math>(0)(1,1)(2,0)(2,0)(2,0)=\varepsilon_{\omega^3}</math> | ||
<math>(0)(1,1)(2)(3)=\varepsilon_{\omega^\omega}</math> | <math>(0)(1,1)(2,0)(3,0)=\varepsilon_{\omega^\omega}</math> | ||
<math>(0)(1,1)(2)(3)(4)=\varepsilon_{\omega^{\omega^\omega}}</math> | <math>(0)(1,1)(2,0)(3,0)(4)=\varepsilon_{\omega^{\omega^\omega}}</math> | ||
<math>(0)(1,1)(2)(3,1)=\varepsilon_{\varepsilon_0}</math> | <math>(0)(1,1)(2,0)(3,1)=\varepsilon_{\varepsilon_0}</math> | ||
<math>(0)(1,1)(2)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math> | <math>(0)(1,1)(2,0)(3,1)(1,1)=\varepsilon_{\varepsilon_0+1}</math> | ||
<math>(0)(1,1)(2)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math> | <math>(0)(1,1)(2,0)(3,1)(3,1)=\varepsilon_{\varepsilon_1}</math> | ||
<math>(0)(1,1)(2)(3,1)(4)=\varepsilon_{\varepsilon_\omega}</math> | <math>(0)(1,1)(2,0)(3,1)(4,0)=\varepsilon_{\varepsilon_\omega}</math> | ||
<math>(0)(1,1)(2)(3,1)(4)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math> | <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_0}}</math> | ||
<math>(0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math> | <math>(0)(1,1)(2,0)(3,1)(4,0)(5,1)(6,0)(7,1)=\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}</math> | ||
<math>(0)(1,1)(2,1)=\zeta_0</math> | <math>(0)(1,1)(2,1)=\zeta_0</math> | ||
<math>(0)(1,1)(2,1)(1)(2,1)(3,1)=\zeta_0^2</math> | <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)=\zeta_0^2</math> | ||
<math>(0)(1,1)(2,1)(1)(2,1)(3,1)(2)(3,1)(4,1)=\zeta_0^{\zeta_0}</math> | <math>(0)(1,1)(2,1)(1,0)(2,1)(3,1)(2,0)(3,1)(4,1)=\zeta_0^{\zeta_0}</math> | ||
<math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math> | <math>(0)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_0+1}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(1)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math> | <math>(0)(1,1)(2,1)(1,1)(1,0)(2,1)(3,1)(2,1)=\varepsilon_{\zeta_0+1}^2</math> | ||
<math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math> | <math>(0)(1,1)(2,1)(1,1)(1,1)=\varepsilon_{\zeta_0+2}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2)=\varepsilon_{\zeta_0+\omega}</math> | <math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_0+\omega}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math> | <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)=\varepsilon_{\zeta_0+\varepsilon_0}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math> | <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)=\varepsilon_{\zeta_0\times2}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math> | <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)=\varepsilon_{\varepsilon_{\zeta_0+1}}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)(4)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math> | <math>(0)(1,1)(2,1)(1,1)(2,0)(3,1)(4,1)(3,1)(4,0)(5,1)(6,1)(5,1)=\varepsilon_{\varepsilon_{\varepsilon_{\zeta+1}}}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math> | <math>(0)(1,1)(2,1)(1,1)(2,1)=\zeta_1</math> | ||
第223行: | 第223行: | ||
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math> | <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)=\varepsilon_{\zeta_1+1}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2)=\varepsilon_{\zeta_1+\omega}</math> | <math>(0)(1,1)(2,1)(1,1)(2,0)=\varepsilon_{\zeta_1+\omega}</math> | ||
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math> | <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_2</math> | ||
第229行: | 第229行: | ||
<math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math> | <math>(0)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)=\zeta_3</math> | ||
<math>(0)(1,1)(2,1)(2)=\zeta_\omega</math> | <math>(0)(1,1)(2,1)(2,0)=\zeta_\omega</math> | ||
<math>(0)(1,1)(2,1)(2)(2)=\zeta_{\omega^2}</math> | <math>(0)(1,1)(2,1)(2,0)(2,0)=\zeta_{\omega^2}</math> | ||
<math>(0)(1,1)(2,1)(2)(3,1)=\zeta_{\varepsilon_0}</math> | <math>(0)(1,1)(2,1)(2,0)(3,1)=\zeta_{\varepsilon_0}</math> | ||
<math>(0)(1,1)(2,1)(2)(3,1)(4,1)=\zeta_{\zeta_0}</math> | <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)=\zeta_{\zeta_0}</math> | ||
<math>(0)(1,1)(2,1)(2)(3,1)(4,1)(4)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math> | <math>(0)(1,1)(2,1)(2,0)(3,1)(4,1)(4,0)(5,1)(6,1)=\zeta_{\zeta_{\zeta_0}}</math> | ||
<math>(0)(1,1)(2,1)(2,1)=\eta_0</math> | <math>(0)(1,1)(2,1)(2,1)=\eta_0</math> | ||
第245行: | 第245行: | ||
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math> | <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)=\zeta_{\eta_0+1}</math> | ||
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math> | <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,0)(3,1)(4,1)(4,1)(3,1)(4,1)=\zeta_{\zeta_{\eta_0+1}}</math> | ||
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math> | <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_1</math> | ||
第251行: | 第251行: | ||
<math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math> | <math>(0)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)=\eta_2</math> | ||
<math>(0)(1,1)(2,1)(2,1)(2)=\eta_\omega</math> | <math>(0)(1,1)(2,1)(2,1)(2,0)=\eta_\omega</math> | ||
<math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math> | <math>(0)(1,1)(2,1)(2,1)(2,1)=\varphi(4,0)=\psi(\Omega^3)</math> | ||
<math>(0)(1,1)(2,1)(3)=\varphi(\omega,0)=\psi(\Omega^\omega)</math> | <math>(0)(1,1)(2,1)(3,0)=\varphi(\omega,0)=\psi(\Omega^\omega)</math> | ||
<math>(0)(1,1)(2,1)(3)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math> | <math>(0)(1,1)(2,1)(3,0)(1,1)=\varphi(1,\varphi(\omega,0)+1)=\psi(\Omega^\omega+1)</math> | ||
<math>(0)(1,1)(2,1)(3)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math> | <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)=\varphi(2,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega)</math> | ||
<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math> | <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(2,1)=\varphi(3,\varphi(\omega,0)+1)=\psi(\Omega^\omega+\Omega^2)</math> | ||
<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(3)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math> | <math>(0)(1,1)(2,1)(3)(1,1)(2,1)(3,0)=\varphi(\omega,1)=\psi(\Omega^\omega\times2)</math> | ||
<math>(0)(1,1)(2,1)(3)(1,1)(2,1)(3)(1,1)(2,1)(3)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math> | <math>(0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)(1,1)(2,1)(3,0)=\varphi(\omega,2)=\psi(\Omega^\omega\times3)</math> | ||
<math>(0)(1,1)(2,1)(3)(2)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math> | <math>(0)(1,1)(2,1)(3,0)(2,0)=\varphi(\omega,\omega)=\psi(\Omega^\omega\times\omega)</math> | ||
<math>(0)(1,1)(2,1)(3)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math> | <math>(0)(1,1)(2,1)(3,0)(2,1)=\varphi(\omega+1,0)=\psi(\Omega^{\omega+1})</math> | ||
<math>(0)(1,1)(2,1)(3)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math> | <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)=\varphi(\omega+2,0)=\psi(\Omega^{\omega+2})</math> | ||
<math>(0)(1,1)(2,1)(3)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math> | <math>(0)(1,1)(2,1)(3,0)(2,1)(2,1)(2,1)=\varphi(\omega+3,0)=\psi(\Omega^{\omega+3})</math> | ||
<math>(0)(1,1)(2,1)(3)(2,1)(3)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math> | <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times2,0)=\psi(\Omega^{\omega\times2})</math> | ||
<math>(0)(1,1)(2,1)(3)(2,1)(3)(2,1)(3)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math> | <math>(0)(1,1)(2,1)(3,0)(2,1)(3,0)(2,1)(3,0)=\varphi(\omega\times3,0)=\psi(\Omega^{\omega\times3})</math> | ||
<math>(0)(1,1)(2,1)(3)(3)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math> | <math>(0)(1,1)(2,1)(3,0)(3,0)=\varphi(\omega^2,0)=\psi(\Omega^{\omega^2})</math> | ||
<math>(0)(1,1)(2,1)(3)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math> | <math>(0)(1,1)(2,1)(3,0)(4,1)=\varphi(\varphi(1,0),0)=\psi(\Omega^{\psi(0)})</math> | ||
<math>(0)(1,1)(2,1)(3)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math> | <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)=\varphi(\varphi(2,0),0)=\psi(\Omega^{\psi(\Omega)})</math> | ||
<math>(0)(1,1)(2,1)(3)(4,1)(5,1)(6)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math> | <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)=\varphi(\varphi(\omega,0),0)=\psi(\Omega^{\psi(\Omega^\omega)})</math> | ||
<math>(0)(1,1)(2,1)(3)(4,1)(5,1)(6)(7,1)(8,1)(9)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math> | <math>(0)(1,1)(2,1)(3,0)(4,1)(5,1)(6,0)(7,1)(8,1)(9,0)=\varphi(\varphi(\varphi(\omega,0),0),0)=\psi(\Omega^{\psi(\Omega^{\psi(\Omega^\omega)})})</math> | ||
<math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math> | <math>(0)(1,1)(2,1)(3,1)=\varphi(1,0,0)=\Gamma_0=\psi(\Omega^\Omega)</math> | ||
第295行: | 第295行: | ||
<math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math> | <math>(0)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)(1,1)(2,1)(3,1)=\varphi(1,0,2)=\Gamma_2=\psi(\Omega^\Omega\times3)</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math> | <math>(0)(1,1)(2,1)(3,1)(2,0)=\varphi(1,0,\omega)=\Gamma_\omega=\psi(\Omega^\Omega\times\omega)</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math> | <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)=\varphi(1,0,\varphi(1,0,0))=\Gamma_{\Gamma_0}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega))</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2)(3,1)(4,1)(5,1)(4)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math> | <math>(0)(1,1)(2,1)(3,1)(2,0)(3,1)(4,1)(5,1)(4,0)(5,1)(6,1)(7,1)=\varphi(1,0,\varphi(1,0,\varphi(1,0,0)))=\Gamma_{\Gamma_{\Gamma_0}}=\psi(\Omega^\Omega\times\psi(\Omega^\Omega\times\psi(\Omega^\Omega)))</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math> | <math>(0)(1,1)(2,1)(3,1)(2,1)=\varphi(1,1,0)=\psi(\Omega^{\Omega+1})</math> | ||
第305行: | 第305行: | ||
<math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math> | <math>(0)(1,1)(2,1)(3,1)(2,1)(2,1)=\varphi(1,2,0)=\psi(\Omega^{\Omega+2})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2,1)(3)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math> | <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)=\varphi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2,1)(3)(4,1)(5,1)(6,1)(5,1)(6)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math> | <math>(0)(1,1)(2,1)(3,1)(2,1)(3,0)(4,1)(5,1)(6,1)(5,1)(6,0)=\varphi(1,\varphi(1,\omega,0),0)=\psi(\Omega^{\Omega+\psi(\Omega^{\Omega+\omega})})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math> | <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)=\psi(2,0,0)=\psi(\Omega^{\Omega\times2})</math> | ||
第313行: | 第313行: | ||
<math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math> | <math>(0)(1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)=\psi(3,0,0)=\psi(\Omega^{\Omega\times3})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(3)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math> | <math>(0)(1,1)(2,1)(3,1)(3,0)=\varphi(\omega,0,0)=\psi(\Omega^{\Omega\times\omega})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math> | <math>(0)(1,1)(2,1)(3,1)(3,1)=\varphi(1,0,0,0)=\psi(\Omega^{\Omega^2})</math> | ||
第319行: | 第319行: | ||
<math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math> | <math>(0)(1,1)(2,1)(3,1)(3,1)(3,1)=\varphi(1,0,0,0,0)=\psi(\Omega^{\Omega^3})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(4)=\psi(\Omega^{\Omega^\omega})</math> | <math>(0)(1,1)(2,1)(3,1)(4,0)=\psi(\Omega^{\Omega^\omega})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(4)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math> | <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)=\psi(\Omega^{\Omega^{\psi(0)}})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math> | <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)=\psi(\Omega^{\Omega^{\psi(\Omega)}})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math> | <math>(0)(1,1)(2,1)(3,1)(4,0)(5,1)(6,1)(7,1)=\psi(\Omega^{\Omega^{\psi(\Omega^\Omega)}})</math> | ||
<math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math> | <math>(0)(1,1)(2,1)(3,1)(4,1)=\psi(\Omega^{\Omega^\Omega})</math> |
2025年7月9日 (三) 01:10的版本
目前使用的OCF为M型,后续补充BOCF
1:单行BMS(PrSS)
2:双行BMS