打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

PrSS VS 康托范式:修订间差异

来自Googology Wiki
Zhy137036留言 | 贡献
无编辑摘要
Zhy137036留言 | 贡献
第2行: 第2行:


== 枚举 ==
== 枚举 ==
<math>(0)=1</math>
{| class="wikitable"
|-
! PrSS 表达式 !! 康托范式
|-
| <math>(0)</math> || <math>1</math>
|-
| <math>(0,0)</math> || <math>2</math>
|-
| <math>(0,0,0)</math> || <math>3</math>
|-
| <math>(0,1)=({\color{red}0},{\color{green}0},\cdots,{\color{blue}0})</math> || <math>\omega</math>
|-
| <math>(0,1,0)</math> || <math>\omega+1</math>
|-
| <math>(0,1,0,0)</math> || <math>\omega+2</math>
|-
| <math>(0,1,0,1)=(0,1,{\color{red}0},{\color{green}0},\cdots,{\color{blue}0})</math> || <math>\omega\times 2</math>
|-
| <math>(0,1,0,1,0,1)</math> || <math>\omega\times 3</math>
|-
| <math>(0,1,1)=({\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})</math> || <math>\omega^{2}</math>
|-
| <math>(0,1,1,0)</math> || <math>\omega^{2}+1</math>
|-
| <math>(0,1,1,0,1)</math> || <math>\omega^{2}+\omega</math>
|-
| <math>(0,1,1,0,1,0)</math> || <math>\omega^{2}+\omega+1</math>
|-
| <math>(0,1,1,0,1,0,1)</math> || <math>\omega^{2}+\omega\times 2</math>
|-
| <math>(0,1,1,0,1,1)=(0,1,1,{\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})</math> || <math>\omega^{2}\times 2</math>
|-
| <math>(0,1,1,0,1,1,0,1,1)</math> || <math>\omega^{2}\times 3</math>
|-
| <math>(0,1,1,1)=({\color{red}0,1,1},{\color{green}0,1,1},\cdots,{\color{blue}0,1,1})</math> || <math>\omega^{3}</math>
|-
| <math>(0,1,1,1,1)</math> || <math>\omega^{4}</math>
|-
| <math>(0,1,2)=(0,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})</math> || <math>\omega^{\omega}</math>
|-
| <math>(0,1,2,0,1,2)</math> || <math>\omega^{\omega}\times 2</math>
|-
| <math>(0,1,2,1)=({\color{red}0,1,2},{\color{green}0,1,2},\cdots,{\color{blue}0,1,2})</math> || <math>\omega^{\omega+1}</math>
|-
| <math>(0,1,2,1,0,1,2)</math> || <math>\omega^{\omega+1}+\omega^{\omega}</math>
|-
| <math>(0,1,2,1,0,1,2,1)</math> || <math>\omega^{\omega+1}\times 2</math>
|-
| <math>(0,1,2,1,1)=({\color{red}0,1,2,1},{\color{green}0,1,2,1},\cdots,{\color{blue}0,1,2,1})</math> || <math>\omega^{\omega+2}</math>
|-
| <math>(0,1,2,1,1,1)</math> || <math>\omega^{\omega+3}</math>
|-
| <math>(0,1,2,1,2)=(0,1,2,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})</math> || <math>\omega^{\omega\times 2}</math>
|-
| <math>(0,1,2,1,2,1)</math> || <math>\omega^{\omega\times 2+1}</math>
|-
| <math>(0,1,2,1,2,1,2)</math> || <math>\omega^{\omega\times 3}</math>
|-
| <math>(0,1,2,2)=(0,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})</math> || <math>\omega^{\omega^{2}}</math>
|-
| <math>(0,1,2,2,1)</math> || <math>\omega^{\omega^{2}+1}</math>
|-
| <math>(0,1,2,2,1,2)</math> || <math>\omega^{\omega^{2}+\omega}</math>
|-
| <math>(0,1,2,2,1,2,1)</math> || <math>\omega^{\omega^{2}+\omega+1}</math>
|-
| <math>(0,1,2,2,1,2,1,2)</math> || <math>\omega^{\omega^{2}+\omega\times 2}</math>
|-
| <math>(0,1,2,2,1,2,2)=(0,1,2,2,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})</math> || <math>\omega^{\omega^{2}*2}</math>
|-
| <math>(0,1,2,2,2)=(0,{\color{red}1,2,2},{\color{green}1,2,2},\cdots,{\color{blue}1,2,2})</math> || <math>\omega^{\omega^{3}}</math>
|-
| <math>(0,1,2,3)=(0,1,{\color{red}2},{\color{green}2},\cdots,{\color{blue}2})</math> || <math>\omega^{\omega^{\omega}}</math>
|-
| <math>(0,1,2,3,2)</math> || <math>\omega^{\omega^{\omega+1}}</math>
|-
| <math>(0,1,2,3,2,3)</math> || <math>\omega^{\omega^{\omega\times 2}}</math>
|-
| <math>(0,1,2,3,3)</math> || <math>\omega^{\omega^{\omega^{2}}}</math>
|-
| <math>(0,1,2,3,4)=(0,1,2,{\color{red}3},{\color{green}3},\cdots,{\color{blue}3})</math> || <math>\omega^{\omega^{\omega^{\omega}}}</math>
|-
| <math>(0,1,2,3,4,5,...)=\mathrm{Limit\ of\ PrSS} </math> || <math>\varepsilon_{0}</math>  
|}


<math>(0,0)=2</math>
最终得到,PrSS 的极限是 <math>\varepsilon_0</math>.
 
<math>(0,0,0)=3</math>
 
<math>(0,1)=({\color{red}0},{\color{green}0},\cdots,{\color{blue}0})=\omega</math>
 
<math>(0,1,0)=\omega+1</math>
 
<math>(0,1,0,0)=\omega+2</math>
 
<math>(0,1,0,1)=(0,1,{\color{red}0},{\color{green}0},\cdots,{\color{blue}0})=\omega\times 2</math>
 
<math>(0,1,0,1,0,1)=\omega\times 3</math>
 
<math>(0,1,1)=({\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})=\omega^{2}</math>
 
<math>(0,1,1,0)=\omega^{2}+1</math>
 
<math>(0,1,1,0,1)=\omega^{2}+\omega</math>
 
<math>(0,1,1,0,1,0)=\omega^{2}+\omega+1</math>
 
<math>(0,1,1,0,1,0,1)=\omega^{2}+\omega\times 2</math>
 
<math>(0,1,1,0,1,1)=(0,1,1,{\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})=\omega^{2}\times 2</math>
 
<math>(0,1,1,0,1,1,0,1,1)=\omega^{2}\times 3</math>
 
<math>(0,1,1,1)=({\color{red}0,1,1},{\color{green}0,1,1},\cdots,{\color{blue}0,1,1})=\omega^{3}</math>
 
<math>(0,1,1,1,1)=\omega^{4}</math>
 
<math>(0,1,2)=(0,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})=\omega^{\omega}</math>
 
<math>(0,1,2,0,1,2)=\omega^{\omega}\times 2</math>
 
<math>(0,1,2,1)=({\color{red}0,1,2},{\color{green}0,1,2},\cdots,{\color{blue}0,1,2})=\omega^{\omega+1}</math>
 
<math>(0,1,2,1,0,1,2)=\omega^{\omega+1}+\omega^{\omega}</math>
 
<math>(0,1,2,1,0,1,2,1)=\omega^{\omega+1}\times 2</math>
 
<math>(0,1,2,1,1)=({\color{red}0,1,2,1},{\color{green}0,1,2,1},\cdots,{\color{blue}0,1,2,1})=\omega^{\omega+2}</math>
 
<math>(0,1,2,1,1,1)=\omega^{\omega+3}</math>
 
<math>(0,1,2,1,2)=(0,1,2,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})=\omega^{\omega\times 2}</math>
 
<math>(0,1,2,1,2,1)=\omega^{\omega\times 2+1}</math>
 
<math>(0,1,2,1,2,1,2)=\omega^{\omega\times 3}</math>
 
<math>(0,1,2,2)=(0,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})=\omega^{\omega^{2}}</math>
 
<math>(0,1,2,2,1)=\omega^{\omega^{2}+1}</math>
 
<math>(0,1,2,2,1,2)=\omega^{\omega^{2}+\omega}</math>
 
<math>(0,1,2,2,1,2,1)=\omega^{\omega^{2}+\omega+1}</math>
 
<math>(0,1,2,2,1,2,1,2)=\omega^{\omega^{2}+\omega\times 2}</math>
 
<math>(0,1,2,2,1,2,2)=(0,1,2,2,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})=\omega^{\omega^{2}*2}</math>
 
<math>(0,1,2,2,2)=(0,{\color{red}1,2,2},{\color{green}1,2,2},\cdots,{\color{blue}1,2,2})=\omega^{\omega^{3}}</math>
 
<math>(0,1,2,3)=(0,1,{\color{red}2},{\color{green}2},\cdots,{\color{blue}2})=\omega^{\omega^{\omega}}</math>
 
<math>(0,1,2,3,2)=\omega^{\omega^{\omega+1}}</math>
 
<math>(0,1,2,3,2,3)=\omega^{\omega^{\omega\times 2}}</math>
 
<math>(0,1,2,3,3)=\omega^{\omega^{\omega^{2}}}</math>
 
<math>(0,1,2,3,4)=(0,1,2,{\color{red}3},{\color{green}3},\cdots,{\color{blue}3})=\omega^{\omega^{\omega^{\omega}}}</math>
 
<math>(0,1,2,3,4,5,...)= \mathrm{Limit\ of\ PrSS} =\varepsilon_{0}</math>
 
最终得到,PrSS 的极限是 <math>\varepsilon_0</math>.  


== 互译方法 ==
== 互译方法 ==

2025年7月5日 (六) 13:50的版本

本条目展示 PrSS康托范式的列表分析和互译方法。

枚举

PrSS 表达式 康托范式
(0) 1
(0,0) 2
(0,0,0) 3
(0,1)=(0,0,,0) ω
(0,1,0) ω+1
(0,1,0,0) ω+2
(0,1,0,1)=(0,1,0,0,,0) ω×2
(0,1,0,1,0,1) ω×3
(0,1,1)=(0,1,0,1,,0,1) ω2
(0,1,1,0) ω2+1
(0,1,1,0,1) ω2+ω
(0,1,1,0,1,0) ω2+ω+1
(0,1,1,0,1,0,1) ω2+ω×2
(0,1,1,0,1,1)=(0,1,1,0,1,0,1,,0,1) ω2×2
(0,1,1,0,1,1,0,1,1) ω2×3
(0,1,1,1)=(0,1,1,0,1,1,,0,1,1) ω3
(0,1,1,1,1) ω4
(0,1,2)=(0,1,1,,1) ωω
(0,1,2,0,1,2) ωω×2
(0,1,2,1)=(0,1,2,0,1,2,,0,1,2) ωω+1
(0,1,2,1,0,1,2) ωω+1+ωω
(0,1,2,1,0,1,2,1) ωω+1×2
(0,1,2,1,1)=(0,1,2,1,0,1,2,1,,0,1,2,1) ωω+2
(0,1,2,1,1,1) ωω+3
(0,1,2,1,2)=(0,1,2,1,1,,1) ωω×2
(0,1,2,1,2,1) ωω×2+1
(0,1,2,1,2,1,2) ωω×3
(0,1,2,2)=(0,1,2,1,2,,1,2) ωω2
(0,1,2,2,1) ωω2+1
(0,1,2,2,1,2) ωω2+ω
(0,1,2,2,1,2,1) ωω2+ω+1
(0,1,2,2,1,2,1,2) ωω2+ω×2
(0,1,2,2,1,2,2)=(0,1,2,2,1,2,1,2,,1,2) ωω2*2
(0,1,2,2,2)=(0,1,2,2,1,2,2,,1,2,2) ωω3
(0,1,2,3)=(0,1,2,2,,2) ωωω
(0,1,2,3,2) ωωω+1
(0,1,2,3,2,3) ωωω×2
(0,1,2,3,3) ωωω2
(0,1,2,3,4)=(0,1,2,3,3,,3) ωωωω
(0,1,2,3,4,5,...)=Limit of PrSS ε0

最终得到,PrSS 的极限是 ε0.

互译方法

PrSS 和康托范式之间存在直接的转换关系.下面介绍 PrSS 到康托范式的转换:

对于待转换的 PrSS 表达式 S,首先找到 S 中所有的项 0,以这些 0 为起点把 S 分为若干个以 0 开头的子表达式,并在中间用加号连接.如果一个子表达式只有一项,即 (0),则将其变为 1.否则,将 (0,X) 变换为 ωX,其中 X 是将 X 中所有的项都减一后得到的表达式.

然后继续对 X 递归地进行操作,直到无法操作为止,就得到了对应的康托范式.

例如 PrSS 表达式 (0,1,2,2,0,1,2,1,1,0,1,2,1,1,0,1,1,1),首先把它分为若干个 0 开头的子表达式并用加号连接,得到 (0,1,2,2)+(0,1,2,1,1)+(0,1,2,1,1)+(0,1,1,1),随后将每个子表达式按照 (0,X)ωX 的形式变换,得到 ω(0,1,1)+ω(0,1,0,0)+ω(0,1,0,0)+ω(0,0,0).随后,把指数上的 PrSS 继续递归变换.(0,1,1) 变换为 ω(0,0)=ω1+1=ω2(0,1,0,0) 变换为 ω1+1+1=ω+2.而 (0,0,0) 就是 1+1+1=3.因此我们便得到了 (0,1,2,2,0,1,2,1,1,0,1,2,1,1,0,1,1,1) 对应的康托范式 ωω2+ωω+2×2+ω3