打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

PrSS VS 康托范式:修订间差异

来自Googology Wiki
Z留言 | 贡献
页面内容被替换为“本条目展示PrSS康托范式的列表分析 分类:分析
标签替换 手工回退 可视化编辑
Z留言 | 贡献
无编辑摘要
第1行: 第1行:
本条目展示[[初等序列系统|PrSS]]和[[康托范式]]的列表分析
本条目展示[[初等序列系统|PrSS]]和[[康托范式]]的列表分析
<math>(0)=1</math>
<math>(0,0)=2</math>
<math>(0,0,0)=3</math>
<math>(0,1)=({\color{red}0},{\color{green}0},\cdots,{\color{blue}0})=\omega</math>
<math>(0,1,0)=\omega+1</math>
<math>(0,1,0,0)=\omega+2</math>
<math>(0,1,0,1)=(0,1,{\color{red}0},{\color{green}0},\cdots,{\color{blue}0})=\omega\times 2</math>
<math>(0,1,0,1,0,1)=\omega\times 3</math>
<math>(0,1,1)=({\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})=\omega^{2}</math>
<math>(0,1,1,0)=\omega^{2}+1</math>
<math>(0,1,1,0,1)=\omega^{2}+\omega</math>
<math>(0,1,1,0,1,0)=\omega^{2}+\omega+1</math>
<math>(0,1,1,0,1,0,1)=\omega^{2}+\omega\times 2</math>
<math>(0,1,1,0,1,1)=(0,1,1,{\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})=\omega^{2}\times 2</math>
<math>(0,1,1,0,1,1,0,1,1)=\omega^{2}\times 3</math>
<math>(0,1,1,1)=({\color{red}0,1,1},{\color{green}0,1,1},\cdots,{\color{blue}0,1,1})=\omega^{3}</math>
<math>(0,1,1,1,1)=\omega^{4}</math>
<math>(0,1,2)=(0,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})=\omega^{\omega}</math>
<math>(0,1,2,0,1,2)=\omega^{\omega}\times 2</math>
<math>(0,1,2,1)=({\color{red}0,1,2},{\color{green}0,1,2},\cdots,{\color{blue}0,1,2})=\omega^{\omega+1}</math>
<math>(0,1,2,1,0,1,2)=\omega^{\omega+1}+\omega^{\omega}</math>
<math>(0,1,2,1,0,1,2,1)=\omega^{\omega+1}\times 2</math>
<math>(0,1,2,1,1)=({\color{red}0,1,2,1},{\color{green}0,1,2,1},\cdots,{\color{blue}0,1,2,1})=\omega^{\omega+2}</math>
<math>(0,1,2,1,1,1)=\omega^{\omega+3}</math>
<math>(0,1,2,1,2)=(0,1,2,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})=\omega^{\omega\times 2}</math>
<math>(0,1,2,1,2,1)=\omega^{\omega\times 2+1}</math>
<math>(0,1,2,1,2,1,2)=\omega^{\omega\times 3}</math>
<math>(0,1,2,2)=(0,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})=\omega^{\omega^{2}}</math>
<math>(0,1,2,2,1)=\omega^{\omega^{2}+1}</math>
<math>(0,1,2,2,1,2)=\omega^{\omega^{2}+\omega}</math>
<math>(0,1,2,2,1,2,1)=\omega^{\omega^{2}+\omega+1}</math>
<math>(0,1,2,2,1,2,1,2)=\omega^{\omega^{2}+\omega\times 2}</math>
<math>(0,1,2,2,1,2,2)=(0,1,2,2,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})=\omega^{\omega^{2}*2}</math>
<math>(0,1,2,2,2)=(0,{\color{red}1,2,2},{\color{green}1,2,2},\cdots,{\color{blue}1,2,2})=\omega^{\omega^{3}}</math>
<math>(0,1,2,3)=(0,1,{\color{red}2},{\color{green}2},\cdots,{\color{blue}2})=\omega^{\omega^{\omega}}</math>
<math>(0,1,2,3,2)=\omega^{\omega^{\omega+1}}</math>
<math>(0,1,2,3,2,3)=\omega^{\omega^{\omega\times 2}}</math>
<math>(0,1,2,3,3)=\omega^{\omega^{\omega^{2}}}</math>
<math>(0,1,2,3,4)=(0,1,2,{\color{red}3},{\color{green}3},\cdots,{\color{blue}3})=\omega^{\omega^{\omega^{\omega}}}</math>
<math>(0,1,2,3,4,5,...)= \mathrm{Limit\ of\ PrSS} =\varepsilon_{0}</math>
最终得到,PrSS
[[分类:分析]]
[[分类:分析]]

2025年7月5日 (六) 07:26的版本

本条目展示PrSS康托范式的列表分析 (0)=1

(0,0)=2

(0,0,0)=3

(0,1)=(0,0,,0)=ω

(0,1,0)=ω+1

(0,1,0,0)=ω+2

(0,1,0,1)=(0,1,0,0,,0)=ω×2

(0,1,0,1,0,1)=ω×3

(0,1,1)=(0,1,0,1,,0,1)=ω2

(0,1,1,0)=ω2+1

(0,1,1,0,1)=ω2+ω

(0,1,1,0,1,0)=ω2+ω+1

(0,1,1,0,1,0,1)=ω2+ω×2

(0,1,1,0,1,1)=(0,1,1,0,1,0,1,,0,1)=ω2×2

(0,1,1,0,1,1,0,1,1)=ω2×3

(0,1,1,1)=(0,1,1,0,1,1,,0,1,1)=ω3

(0,1,1,1,1)=ω4

(0,1,2)=(0,1,1,,1)=ωω

(0,1,2,0,1,2)=ωω×2

(0,1,2,1)=(0,1,2,0,1,2,,0,1,2)=ωω+1

(0,1,2,1,0,1,2)=ωω+1+ωω

(0,1,2,1,0,1,2,1)=ωω+1×2

(0,1,2,1,1)=(0,1,2,1,0,1,2,1,,0,1,2,1)=ωω+2

(0,1,2,1,1,1)=ωω+3

(0,1,2,1,2)=(0,1,2,1,1,,1)=ωω×2

(0,1,2,1,2,1)=ωω×2+1

(0,1,2,1,2,1,2)=ωω×3

(0,1,2,2)=(0,1,2,1,2,,1,2)=ωω2

(0,1,2,2,1)=ωω2+1

(0,1,2,2,1,2)=ωω2+ω

(0,1,2,2,1,2,1)=ωω2+ω+1

(0,1,2,2,1,2,1,2)=ωω2+ω×2

(0,1,2,2,1,2,2)=(0,1,2,2,1,2,1,2,,1,2)=ωω2*2

(0,1,2,2,2)=(0,1,2,2,1,2,2,,1,2,2)=ωω3

(0,1,2,3)=(0,1,2,2,,2)=ωωω

(0,1,2,3,2)=ωωω+1

(0,1,2,3,2,3)=ωωω×2

(0,1,2,3,3)=ωωω2

(0,1,2,3,4)=(0,1,2,3,3,,3)=ωωωω

(0,1,2,3,4,5,...)=Limit of PrSS=ε0 最终得到,PrSS