|
|
第1行: |
第1行: |
| 本条目展示[[初等序列系统|PrSS]]和[[康托范式]]的列表分析<div class="toccolours mw-collapsible mw-collapsed"> | | 本条目展示[[初等序列系统|PrSS]]和[[康托范式]]的列表分析 |
| <math>()=0</math><div class="mw-collapsible-content">
| |
| <math>(0)=1</math>
| |
| | |
| <math>(0,0)=2</math>
| |
| | |
| <math>(0,0,0)=3</math>
| |
| | |
| <math>(0,1)=({\color{red}0},{\color{green}0},\cdots,{\color{blue}0})=\omega</math>
| |
| | |
| <math>(0,1,0)=\omega+1</math>
| |
| | |
| <math>(0,1,0,0)=\omega+2</math>
| |
| | |
| <math>(0,1,0,1)=(0,1,{\color{red}0},{\color{green}0},\cdots,{\color{blue}0})=\omega\times 2</math>
| |
| | |
| <math>(0,1,0,1,0,1)=\omega\times 3</math>
| |
| | |
| <math>(0,1,1)=({\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})=\omega^{2}</math>
| |
| | |
| <math>(0,1,1,0)=\omega^{2}+1</math>
| |
| | |
| <math>(0,1,1,0,1)=\omega^{2}+\omega</math>
| |
| | |
| <math>(0,1,1,0,1,0)=\omega^{2}+\omega+1</math>
| |
| | |
| <math>(0,1,1,0,1,0,1)=\omega^{2}+\omega\times 2</math>
| |
| | |
| <math>(0,1,1,0,1,1)=(0,1,1,{\color{red}0,1},{\color{green}0,1},\cdots,{\color{blue}0,1})=\omega^{2}\times 2</math>
| |
| | |
| <math>(0,1,1,0,1,1,0,1,1)=\omega^{2}\times 3</math>
| |
| | |
| <math>(0,1,1,1)=({\color{red}0,1,1},{\color{green}0,1,1},\cdots,{\color{blue}0,1,1})=\omega^{3}</math>
| |
| | |
| <math>(0,1,1,1,1)=\omega^{4}</math>
| |
| | |
| <math>(0,1,2)=(0,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})=\omega^{\omega}</math>
| |
| | |
| <math>(0,1,2,0,1,2)=\omega^{\omega}\times 2</math>
| |
| | |
| <math>(0,1,2,1)=({\color{red}0,1,2},{\color{green}0,1,2},\cdots,{\color{blue}0,1,2})=\omega^{\omega+1}</math>
| |
| | |
| <math>(0,1,2,1,0,1,2)=\omega^{\omega+1}+\omega^{\omega}</math>
| |
| | |
| <math>(0,1,2,1,0,1,2,1)=\omega^{\omega+1}\times 2</math>
| |
| | |
| <math>(0,1,2,1,1)=({\color{red}0,1,2,1},{\color{green}0,1,2,1},\cdots,{\color{blue}0,1,2,1})=\omega^{\omega+2}</math>
| |
| | |
| <math>(0,1,2,1,1,1)=\omega^{\omega+3}</math>
| |
| | |
| <math>(0,1,2,1,2)=(0,1,2,{\color{red}1},{\color{green}1},\cdots,{\color{blue}1})=\omega^{\omega\times 2}</math>
| |
| | |
| <math>(0,1,2,1,2,1)=\omega^{\omega\times 2+1}</math>
| |
| | |
| <math>(0,1,2,1,2,1,2)=\omega^{\omega\times 3}</math>
| |
| | |
| <math>(0,1,2,2)=(0,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})=\omega^{\omega^{2}}</math>
| |
| | |
| <math>(0,1,2,2,1)=\omega^{\omega^{2}+1}</math>
| |
| | |
| <math>(0,1,2,2,1,2)=\omega^{\omega^{2}+\omega}</math>
| |
| | |
| <math>(0,1,2,2,1,2,1)=\omega^{\omega^{2}+\omega+1}</math>
| |
| | |
| <math>(0,1,2,2,1,2,1,2)=\omega^{\omega^{2}+\omega\times 2}</math>
| |
| | |
| <math>(0,1,2,2,1,2,2)=(0,1,2,2,{\color{red}1,2},{\color{green}1,2},\cdots,{\color{blue}1,2})=\omega^{\omega^{2}*2}</math>
| |
| | |
| <math>(0,1,2,2,2)=(0,{\color{red}1,2,2},{\color{green}1,2,2},\cdots,{\color{blue}1,2,2})=\omega^{\omega^{3}}</math>
| |
| | |
| <math>(0,1,2,3)=(0,1,{\color{red}2},{\color{green}2},\cdots,{\color{blue}2})=\omega^{\omega^{\omega}}</math>
| |
| | |
| <math>(0,1,2,3,2)=\omega^{\omega^{\omega+1}}</math>
| |
| | |
| <math>(0,1,2,3,2,3)=\omega^{\omega^{\omega\times 2}}</math>
| |
| | |
| <math>(0,1,2,3,3)=\omega^{\omega^{\omega^{2}}}</math>
| |
| | |
| <math>(0,1,2,3,4)=(0,1,2,{\color{red}3},{\color{green}3},\cdots,{\color{blue}3})=\omega^{\omega^{\omega^{\omega}}}</math>
| |
| | |
| <math>(0,1,2,3,4,5,...)= \mathrm{Limit\ of\ PrSS} =\varepsilon_{0}</math>
| |
| | |
| 最终得到,PrSS 的极限为 <math>\varepsilon_{0}</math>.
| |
| </div></div>
| |
| [[分类:分析]] | | [[分类:分析]] |