打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

阿克曼函数:修订间差异

来自Googology Wiki
Phyrion留言 | 贡献
无编辑摘要
Phyrion留言 | 贡献
无编辑摘要
第8行: 第8行:
     A(m-1, A(m, n-1)) &, m>0\ \text{and}\ n>0
     A(m-1, A(m, n-1)) &, m>0\ \text{and}\ n>0
   \end{cases}</math>
   \end{cases}</math>
==== 示例 ====
<math>\begin{array}{cclclcl}
A(2,2) &=& A(1,A(2,1))\\ &=& A(1,A(1,A(2,0)))&&\\
      &=& A(1,A(1,A(1,1)))\\ &=& A(1,A(1,A(0,A(1,0))))\\ &=&  A(1,A(1,A(0,A(0,1))))\\ &=& A(1,A(1,A(0,2)))\\&=& A(1, A(1, 3))\\
&=& A(1, A(0, A(1, 2)))\\ &=& A(1, A(0, A(0, A(1, 1))))\\
&=& A(1, A(0, A(0, A(0, A(1, 0)))))\\ &=& A(1, A(0, A(0, A(0, A(0, 1)))))\\
&=& A(1, A(0, A(0, A(0, 2))))\\
&=& A(1, A(0, A(0, 3)))\\ &=& A(1, A(0, 4))\\ &=& A(1, 5)\\ &=& A(0, A(1, 4))\\
&=& A(0, A(0, A(1, 3)))\\ &=& A(0, A(0, A(0, A(1, 2))))\\
&=& A(0, A(0, A(0, A(0, A(1, 1)))))\\
&=& A(0, A(0, A(0, A(0, A(0, A(1, 0))))))\\
&=& A(0, A(0, A(0, A(0, A(0, A(0, 1))))))\\
&=& A(0, A(0, A(0, A(0, A(0, 2)))))\\ &=& A(0, A(0, A(0, A(0, 3))))\\
&=& A(0, A(0, A(0, 4)))\\ &=& A(0, A(0, 5))\\ &=& A(0, 6)\\ &=& 7
\end{array}</math>


==== 函数值表 ====
==== 函数值表 ====

2025年7月3日 (四) 17:06的版本

阿克曼函数(Ackermann function)是由德国数学家威廉·阿克曼(Wilhelm Ackermann)创造的非原始递归函数。

定义

A(m,n)={n+1,m=0A(m1,1),m>0 and n=0A(m1,A(m,n1)),m>0 and n>0

示例

A(2,2)=A(1,A(2,1))=A(1,A(1,A(2,0)))=A(1,A(1,A(1,1)))=A(1,A(1,A(0,A(1,0))))=A(1,A(1,A(0,A(0,1))))=A(1,A(1,A(0,2)))=A(1,A(1,3))=A(1,A(0,A(1,2)))=A(1,A(0,A(0,A(1,1))))=A(1,A(0,A(0,A(0,A(1,0)))))=A(1,A(0,A(0,A(0,A(0,1)))))=A(1,A(0,A(0,A(0,2))))=A(1,A(0,A(0,3)))=A(1,A(0,4))=A(1,5)=A(0,A(1,4))=A(0,A(0,A(1,3)))=A(0,A(0,A(0,A(1,2))))=A(0,A(0,A(0,A(0,A(1,1)))))=A(0,A(0,A(0,A(0,A(0,A(1,0))))))=A(0,A(0,A(0,A(0,A(0,A(0,1))))))=A(0,A(0,A(0,A(0,A(0,2)))))=A(0,A(0,A(0,A(0,3))))=A(0,A(0,A(0,4)))=A(0,A(0,5))=A(0,6)=7

函数值表

A(mn) 的值
m\n 0 1 2 3 4 n
0 1 2 3 4 5 n+1
1 2 3 4 5 6 n+2
2 3 5 7 9 11 2(n+3)3
3 5 13 29 61 125 2(n+3)3
4 13 65533 265536 − 3 A(3, 265536 − 3) A(3, A(4, 3)) 2223(n+3个2)
5 65533 A(4, 65533) A(4, A(5, 1)) A(4, A(5, 2)) A(4, A(5, 3))
6 A(5, 1) A(5, A(5, 1)) A(5, A(6, 1)) A(5, A(6, 2)) A(5, A(6, 3))

小贴士

阿克曼函数的FGH增长率约为ω