打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

Laver Table:修订间差异

来自Googology Wiki
Z留言 | 贡献
无编辑摘要
Z留言 | 贡献
无编辑摘要
第6行: 第6行:
\begin{eqnarray*}a \star_n 0 & = & 0 \\a \star_n 1 & = & (a+1) \mod 2^n \\a \star_n i & = & (a \star_n (i-1)) \star_n (a \star_n 1) \ (i \neq 0,1)\end{eqnarray*}
\begin{eqnarray*}a \star_n 0 & = & 0 \\a \star_n 1 & = & (a+1) \mod 2^n \\a \star_n i & = & (a \star_n (i-1)) \star_n (a \star_n 1) \ (i \neq 0,1)\end{eqnarray*}


Laver表<math>A_n</math>定义为唯一的取值为<math>a~\star n~b</math>的<math>2^n\times2^n</math>表。
Laver表<math>A_n</math>定义为唯一的取值为<math>a~\star_n~b</math>的<math>2^n\times2^n</math>表。Laver表可以用此<ref>猫山にゃん太. Laver table - レイバーのテーブル[EB/OL]. 2022. [https://n-nekoyama.github.io/googology/laver_table/. https://n-nekoyama.github.io/googology/laver_table/.]</ref>进行计算。


注意这一定理仅适用于 2 的幂。假如我们考虑的二元运算作用于一般的<math>\{1,\cdots,a\}</math>上,其中<math>a\neq 2^n</math>,则这样的二元运算<math>\star_n</math>将不是存在且唯一的。
注意这一定理仅适用于 2 的幂。假如我们考虑的二元运算作用于一般的<math>\{1,\cdots,a\}</math>上,其中<math>a\neq 2^n</math>,则这样的二元运算<math>\star_n</math>将不是存在且唯一的。
第19行: 第19行:
== 取值 ==
== 取值 ==


TO DO:取值
=== Laver表 ===
以下展示了前6个Laver表<ref>Dehornoy, Patrick. [https://web.archive.org/web/20230429003832/https://www.lmno.cnrs.fr/archives/dehornoy/Talks/Dyz.pdf Laver Tables] (starting on slide 26). Retrieved 2018-12-11.</ref>
{| class="wikitable mw-collapsible mw-collapsed"
|+<math>\star_0</math>的Laver表
!
!1
|-
|'''1'''
|1
|}
{| class="wikitable mw-collapsible mw-collapsed"
|+<math>\star_1</math>的Laver表
!
!1
!2
|-
|'''1'''
|2
|2
|-
|'''2'''
|1
|2
|}
{| class="wikitable mw-collapsible mw-collapsed"
|+<math>\star_2</math>的Laver表
!
!1
!2
!3
!4
|-
|1
|2
|4
|2
|4
|-
|2
|3
|4
|2
|4
|-
|3
|4
|4
|4
|4
|-
|4
|1
|2
|3
|4
|}
{| class="wikitable mw-collapsible mw-collapsed"
! colspan="9" |<math>\star_3</math>的Laver表
|-
!
!1
!2
!3
!4
!5
!6
!7
|8
|-
!1
|2
|4
|6
|8
|2
|4
|6
|8
|-
!2
|3
|4
|7
|8
|3
|4
|7
|8
|-
!3
|4
|8
|4
|8
|4
|8
|4
|8
|-
!4
|5
|6
|7
|8
|5
|6
|7
|8
|-
!5
|6
|8
|6
|8
|6
|8
|6
|8
|-
!6
|7
|8
|7
|8
|7
|8
|7
|8
|-
!7
|8
|8
|8
|8
|8
|8
|8
|8
|-
!8
|1
|2
|3
|4
|5
|6
|7
|8
|}
{| class="wikitable mw-collapsible mw-collapsed"
! colspan="17" |<math>\star_4</math>的Laver表
|-
!
!1
!2
!3
!4
!5
!6
!7
!8
!9
!10
!11
!12
!13
!14
!15
|16
|-
!1
|2
|12
|14
|16
|2
|12
|14
|16
|2
|12
|14
|16
|2
|12
|14
|16
|-
!2
|3
|12
|15
|16
|3
|12
|15
|16
|3
|12
|15
|16
|3
|12
|15
|16
|-
!3
|4
|8
|12
|16
|4
|8
|12
|16
|4
|8
|12
|16
|4
|8
|12
|16
|-
!4
|5
|6
|7
|8
|13
|14
|15
|16
|5
|6
|7
|8
|13
|14
|15
|16
|-
!5
|6
|8
|14
|16
|6
|8
|14
|16
|6
|8
|14
|16
|6
|8
|14
|16
|-
!6
|7
|8
|15
|16
|7
|8
|15
|16
|7
|8
|15
|16
|7
|8
|15
|16
|-
!7
|8
|16
|8
|16
|8
|16
|8
|16
|8
|16
|8
|16
|8
|16
|8
|16
|-
!8
|9
|10
|11
|12
|13
|14
|15
|16
|9
|10
|11
|12
|13
|14
|15
|16
|-
!9
|10
|12
|14
|16
|10
|12
|14
|16
|10
|12
|14
|16
|10
|12
|14
|16
|-
!10
|11
|12
|15
|16
|11
|12
|15
|16
|11
|12
|15
|16
|11
|12
|15
|16
|-
!11
|12
|16
|12
|16
|12
|16
|12
|16
|12
|16
|12
|16
|12
|16
|12
|16
|-
!12
|13
|14
|15
|16
|13
|14
|15
|16
|13
|14
|15
|16
|13
|14
|15
|16
|-
!13
|14
|16
|14
|16
|14
|16
|14
|16
|14
|16
|14
|16
|14
|16
|14
|16
|-
!14
|15
|16
|15
|16
|15
|16
|15
|16
|15
|16
|15
|16
|15
|16
|15
|16
|-
!15
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|16
|-
!16
|1
|2
|3
|4
|5
|6
|7
|8
|9
|10
|11
|12
|13
|14
|15
|16
|}
{| class="wikitable mw-collapsible mw-collapsed"
! colspan="33" |<math>\star_6</math>的Laver表
|-
!
!1
!2
!3
!4
!5
!6
!7
!8
!9
!10
!11
!12
!13
!14
!15
!16
!17
!18
!19
!20
!21
!22
!23
!24
!25
!26
!27
!28
!29
!30
!31
!32
|-
!1
|2
|12
|14
|16
|18
|28
|30
|32
|2
|12
|14
|16
|18
|28
|30
|32
|2
|12
|14
|16
|18
|28
|30
|32
|2
|12
|14
|16
|18
|28
|30
|32
|-
!2
|3
|12
|15
|16
|19
|28
|31
|32
|3
|12
|15
|16
|19
|28
|31
|32
|3
|12
|15
|16
|19
|28
|31
|32
|3
|12
|15
|16
|19
|28
|31
|32
|-
!3
|4
|8
|12
|16
|20
|24
|28
|32
|4
|8
|12
|16
|20
|24
|28
|32
|4
|8
|12
|16
|20
|24
|28
|32
|4
|8
|12
|16
|20
|24
|28
|32
|-
!4
|5
|6
|7
|8
|13
|14
|15
|16
|21
|22
|23
|24
|29
|30
|31
|32
|5
|6
|7
|8
|13
|14
|15
|16
|21
|22
|23
|24
|29
|30
|31
|32
|-
!5
|6
|24
|30
|32
|6
|24
|30
|32
|6
|24
|30
|32
|6
|24
|30
|32
|6
|24
|30
|32
|6
|24
|30
|32
|6
|24
|30
|32
|6
|24
|30
|32
|-
!6
|7
|24
|31
|32
|7
|24
|31
|32
|7
|24
|31
|32
|7
|24
|31
|32
|7
|24
|31
|32
|7
|24
|31
|32
|7
|24
|31
|32
|7
|24
|31
|32
|-
!7
|8
|16
|24
|32
|8
|16
|24
|32
|8
|16
|24
|32
|8
|16
|24
|32
|8
|16
|24
|32
|8
|16
|24
|32
|8
|16
|24
|32
|8
|16
|24
|32
|-
!8
|9
|10
|11
|12
|13
|14
|15
|16
|25
|26
|27
|28
|29
|30
|31
|32
|9
|10
|11
|12
|13
|14
|15
|16
|25
|26
|27
|28
|29
|30
|31
|32
|-
!9
|10
|28
|30
|32
|10
|28
|30
|32
|10
|28
|30
|32
|10
|28
|30
|32
|10
|28
|30
|32
|10
|28
|30
|32
|10
|28
|30
|32
|10
|28
|30
|32
|-
!10
|11
|28
|31
|32
|11
|28
|31
|32
|11
|28
|31
|32
|11
|28
|31
|32
|11
|28
|31
|32
|11
|28
|31
|32
|11
|28
|31
|32
|11
|28
|31
|32
|-
!11
|12
|16
|28
|32
|12
|16
|28
|32
|12
|16
|28
|32
|12
|16
|28
|32
|12
|16
|28
|32
|12
|16
|28
|32
|12
|16
|28
|32
|12
|16
|28
|32
|-
!12
|13
|14
|15
|16
|29
|30
|31
|32
|13
|14
|15
|16
|29
|30
|31
|32
|13
|14
|15
|16
|29
|30
|31
|32
|13
|14
|15
|16
|29
|30
|31
|32
|-
!13
|14
|16
|30
|32
|14
|16
|30
|32
|14
|16
|30
|32
|14
|16
|30
|32
|14
|16
|30
|32
|14
|16
|30
|32
|14
|16
|30
|32
|14
|16
|30
|32
|-
!14
|15
|16
|31
|32
|15
|16
|31
|32
|15
|16
|31
|32
|15
|16
|31
|32
|15
|16
|31
|32
|15
|16
|31
|32
|15
|16
|31
|32
|15
|16
|31
|32
|-
!15
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|16
|32
|-
!16
|17
|18
|19
|20
|21
|22
|23
|24
|25
|26
|27
|28
|29
|30
|31
|32
|17
|18
|19
|20
|21
|22
|23
|24
|25
|26
|27
|28
|29
|30
|31
|32
|-
!17
|18
|28
|30
|32
|18
|28
|30
|32
|18
|28
|30
|32
|18
|28
|30
|32
|18
|28
|30
|32
|18
|28
|30
|32
|18
|28
|30
|32
|18
|28
|30
|32
|-
!18
|19
|28
|31
|32
|19
|28
|31
|32
|19
|28
|31
|32
|19
|28
|31
|32
|19
|28
|31
|32
|19
|28
|31
|32
|19
|28
|31
|32
|19
|28
|31
|32
|-
!19
|20
|24
|28
|32
|20
|24
|28
|32
|20
|24
|28
|32
|20
|24
|28
|32
|20
|24
|28
|32
|20
|24
|28
|32
|20
|24
|28
|32
|20
|24
|28
|32
|-
!20
|21
|22
|23
|24
|29
|30
|31
|32
|21
|22
|23
|24
|29
|30
|31
|32
|21
|22
|23
|24
|29
|30
|31
|32
|21
|22
|23
|24
|29
|30
|31
|32
|-
!21
|22
|24
|30
|32
|22
|24
|30
|32
|22
|24
|30
|32
|22
|24
|30
|32
|22
|24
|30
|32
|22
|24
|30
|32
|22
|24
|30
|32
|22
|24
|30
|32
|-
!22
|23
|24
|31
|32
|23
|24
|31
|32
|23
|24
|31
|32
|23
|24
|31
|32
|23
|24
|31
|32
|23
|24
|31
|32
|23
|24
|31
|32
|23
|24
|31
|32
|-
!23
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|24
|32
|-
!24
|25
|26
|27
|28
|29
|30
|31
|32
|25
|26
|27
|28
|29
|30
|31
|32
|25
|26
|27
|28
|29
|30
|31
|32
|25
|26
|27
|28
|29
|30
|31
|32
|-
!25
|26
|28
|30
|32
|26
|28
|30
|32
|26
|28
|30
|32
|26
|28
|30
|32
|26
|28
|30
|32
|26
|28
|30
|32
|26
|28
|30
|32
|26
|28
|30
|32
|-
!26
|27
|28
|31
|32
|27
|28
|31
|32
|27
|28
|31
|32
|27
|28
|31
|32
|27
|28
|31
|32
|27
|28
|31
|32
|27
|28
|31
|32
|27
|28
|31
|32
|-
!27
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|28
|32
|-
!28
|29
|30
|31
|32
|29
|30
|31
|32
|29
|30
|31
|32
|29
|30
|31
|32
|29
|30
|31
|32
|29
|30
|31
|32
|29
|30
|31
|32
|29
|30
|31
|32
|-
!29
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|30
|32
|-
!30
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|31
|32
|-
!31
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|32
|-
!32
|1
|2
|3
|4
|5
|6
|7
|8
|9
|10
|11
|12
|13
|14
|15
|16
|17
|18
|19
|20
|21
|22
|23
|24
|25
|26
|27
|28
|29
|30
|31
|32
|}
 
=== q函数 ===
事实上<math>p(n)</math>是一个增长速度非常缓慢的函数。
 
我们有
 
* <math>q(0) = 0</math>
* <math>q(1) = 2</math>
* <math>q(2)=3</math>
* <math>q(3)=5</math>
* <math>q(4)=9</math>
* <math>q(5) > f_9 (f_8 (f_8(254))) ,</math>,其中这里的FGH改版定义为<math>f_{\alpha+1}(n)=f_\alpha^{n+1}(n)</math>
 
Dougherty 证明了<math>q^n(1) > f_{\omega+1} (\lfloor log3 n\rfloor - 1)</math><ref>Dougherty, Randall. [http://arxiv.org/abs/math.LO/9205202 Critical points in an algebra of elementary embeddings.] Retrieved 2014-08-23.</ref>


== 参考资料 ==
== 参考资料 ==
{{默认排序:相关问题}}
{{默认排序:相关问题}}
[[分类:记号]]
[[分类:记号]]

2025年8月28日 (四) 12:52的版本

Laver表是Richard Laver在1992 年提出的一个增长速度很快的表[1]

定义

考虑作用于{1,,2n}上的二元运算n,它满足如下条件:

\begin{eqnarray*}a \star_n 0 & = & 0 \\a \star_n 1 & = & (a+1) \mod 2^n \\a \star_n i & = & (a \star_n (i-1)) \star_n (a \star_n 1) \ (i \neq 0,1)\end{eqnarray*}

Laver表An定义为唯一的取值为anb2n×2n表。Laver表可以用此[2]进行计算。

注意这一定理仅适用于 2 的幂。假如我们考虑的二元运算作用于一般的{1,,a}上,其中a2n,则这样的二元运算n将不是存在且唯一的。

我们定义如下函数的周期为 p(n):

  • 2n2n
  • a1na

定义q(n)为函数p(n)的逆,即q(n)=min{N|p(N)2n}

取值

Laver表

以下展示了前6个Laver表[3]

0的Laver表
1
1 1
1的Laver表
1 2
1 2 2
2 1 2
2的Laver表
1 2 3 4
1 2 4 2 4
2 3 4 2 4
3 4 4 4 4
4 1 2 3 4
3的Laver表
1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8
4的Laver表
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 12 14 16 2 12 14 16 2 12 14 16 2 12 14 16
2 3 12 15 16 3 12 15 16 3 12 15 16 3 12 15 16
3 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
4 5 6 7 8 13 14 15 16 5 6 7 8 13 14 15 16
5 6 8 14 16 6 8 14 16 6 8 14 16 6 8 14 16
6 7 8 15 16 7 8 15 16 7 8 15 16 7 8 15 16
7 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16
8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
9 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
10 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6的Laver表
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 12 14 16 18 28 30 32 2 12 14 16 18 28 30 32 2 12 14 16 18 28 30 32 2 12 14 16 18 28 30 32
2 3 12 15 16 19 28 31 32 3 12 15 16 19 28 31 32 3 12 15 16 19 28 31 32 3 12 15 16 19 28 31 32
3 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
4 5 6 7 8 13 14 15 16 21 22 23 24 29 30 31 32 5 6 7 8 13 14 15 16 21 22 23 24 29 30 31 32
5 6 24 30 32 6 24 30 32 6 24 30 32 6 24 30 32 6 24 30 32 6 24 30 32 6 24 30 32 6 24 30 32
6 7 24 31 32 7 24 31 32 7 24 31 32 7 24 31 32 7 24 31 32 7 24 31 32 7 24 31 32 7 24 31 32
7 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32
8 9 10 11 12 13 14 15 16 25 26 27 28 29 30 31 32 9 10 11 12 13 14 15 16 25 26 27 28 29 30 31 32
9 10 28 30 32 10 28 30 32 10 28 30 32 10 28 30 32 10 28 30 32 10 28 30 32 10 28 30 32 10 28 30 32
10 11 28 31 32 11 28 31 32 11 28 31 32 11 28 31 32 11 28 31 32 11 28 31 32 11 28 31 32 11 28 31 32
11 12 16 28 32 12 16 28 32 12 16 28 32 12 16 28 32 12 16 28 32 12 16 28 32 12 16 28 32 12 16 28 32
12 13 14 15 16 29 30 31 32 13 14 15 16 29 30 31 32 13 14 15 16 29 30 31 32 13 14 15 16 29 30 31 32
13 14 16 30 32 14 16 30 32 14 16 30 32 14 16 30 32 14 16 30 32 14 16 30 32 14 16 30 32 14 16 30 32
14 15 16 31 32 15 16 31 32 15 16 31 32 15 16 31 32 15 16 31 32 15 16 31 32 15 16 31 32 15 16 31 32
15 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
17 18 28 30 32 18 28 30 32 18 28 30 32 18 28 30 32 18 28 30 32 18 28 30 32 18 28 30 32 18 28 30 32
18 19 28 31 32 19 28 31 32 19 28 31 32 19 28 31 32 19 28 31 32 19 28 31 32 19 28 31 32 19 28 31 32
19 20 24 28 32 20 24 28 32 20 24 28 32 20 24 28 32 20 24 28 32 20 24 28 32 20 24 28 32 20 24 28 32
20 21 22 23 24 29 30 31 32 21 22 23 24 29 30 31 32 21 22 23 24 29 30 31 32 21 22 23 24 29 30 31 32
21 22 24 30 32 22 24 30 32 22 24 30 32 22 24 30 32 22 24 30 32 22 24 30 32 22 24 30 32 22 24 30 32
22 23 24 31 32 23 24 31 32 23 24 31 32 23 24 31 32 23 24 31 32 23 24 31 32 23 24 31 32 23 24 31 32
23 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32 24 32
24 25 26 27 28 29 30 31 32 25 26 27 28 29 30 31 32 25 26 27 28 29 30 31 32 25 26 27 28 29 30 31 32
25 26 28 30 32 26 28 30 32 26 28 30 32 26 28 30 32 26 28 30 32 26 28 30 32 26 28 30 32 26 28 30 32
26 27 28 31 32 27 28 31 32 27 28 31 32 27 28 31 32 27 28 31 32 27 28 31 32 27 28 31 32 27 28 31 32
27 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32 28 32
28 29 30 31 32 29 30 31 32 29 30 31 32 29 30 31 32 29 30 31 32 29 30 31 32 29 30 31 32 29 30 31 32
29 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32
30 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32
31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

q函数

事实上p(n)是一个增长速度非常缓慢的函数。

我们有

  • q(0)=0
  • q(1)=2
  • q(2)=3
  • q(3)=5
  • q(4)=9
  • q(5)>f9(f8(f8(254))),,其中这里的FGH改版定义为fα+1(n)=fαn+1(n)

Dougherty 证明了qn(1)>fω+1(log3n1)[4]

参考资料

  1. Laver, Richard. On the Algebra of Elementary Embeddings of a Rank into Itself. Retrieved 2014-08-23.
  2. 猫山にゃん太. Laver table - レイバーのテーブル[EB/OL]. 2022. https://n-nekoyama.github.io/googology/laver_table/.
  3. Dehornoy, Patrick. Laver Tables (starting on slide 26). Retrieved 2018-12-11.
  4. Dougherty, Randall. Critical points in an algebra of elementary embeddings. Retrieved 2014-08-23.