打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

BHM分析:修订间差异

来自Googology Wiki
Z留言 | 贡献
无编辑摘要
Tabelog留言 | 贡献
无编辑摘要
第1行: 第1行:
本条目展示[[BHM]]的强度的列表分析
本条目展示 [[BHM]] 的强度的列表分析。


=== 1. ===
=== Part 1 ===
{| class="wikitable"
{| class="wikitable"
|+
!BHM
!BHM
!veblen函数
!Veblen 函数
!
!
!
!
第11行: 第10行:
|<math>(0)</math>
|<math>(0)</math>
|<math>1</math>
|<math>1</math>
|
|
|-
|-
|<math>(0)(0)</math>
|<math>(0)(0)</math>
|<math>2</math>
|<math>2</math>
|
|
|-
|-
|<math>(0)(0)(0)</math>
|<math>(0)(0)(0)</math>
|<math>3</math>
|<math>3</math>
|
|
|-
|-
|<math>(0)(1)</math>
|<math>(0)(1)</math>
|<math>\omega</math>
|<math>\omega</math>
|
|
|-
|-
|<math>(0)(1)(0)</math>
|<math>(0)(1)(0)</math>
|<math>\omega +1</math>
|<math>\omega +1</math>
|
|
|-
|-
|<math>(0)(1)(0)(0)</math>
|<math>(0)(1)(0)(0)</math>
|<math>\omega +2</math>
|<math>\omega +2</math>
|
|
|-
|-
|<math>(0)(1)(0)(0)(1)</math>
|<math>(0)(1)(0)(0)(1)</math>
|<math>\omega \times 2</math>
|<math>\omega \times 2</math>
|
|
|-
|-
|<math>(0)(1)(0)(0)(1)(0)</math>
|<math>(0)(1)(0)(0)(1)(0)</math>
|<math>\omega \times 2 +1</math>
|<math>\omega \times 2 +1</math>
|
|
|-
|-
|<math>(0)(1)(0)(0)(1)(0)(0)(1)</math>
|<math>(0)(1)(0)(0)(1)(0)(0)(1)</math>
|<math>\omega \times 3</math>
|<math>\omega \times 3</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)</math>
|<math>(0)(1)(0)(1)</math>
|<math>\omega ^2</math>
|<math>\omega ^2</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)(0)</math>
|<math>(0)(1)(0)(1)(0)</math>
|<math>\omega ^2+1</math>
|<math>\omega ^2+1</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)(0)(0)(1)</math>
|<math>(0)(1)(0)(1)(0)(0)(1)</math>
|<math>\omega ^2+\omega</math>
|<math>\omega ^2+\omega</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)(0)(0)(1)(0)(0)(1)</math>
|<math>(0)(1)(0)(1)(0)(0)(1)(0)(0)(1)</math>
|<math>\omega ^2+\omega\times 2</math>
|<math>\omega ^2+\omega\times 2</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)</math>
|<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)</math>
|<math>\omega ^2\times 2</math>
|<math>\omega ^2\times 2</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)(0)(0)(1)</math>
|<math>(0)(1)(0)(1)(0)(0)(1)(0)(1)(0)(0)(1)</math>
|<math>\omega ^2\times 2 + \omega</math>
|<math>\omega ^2\times 2 + \omega</math>
|
|
|-
|-
|<math>(0)(1)(0)(1)(0)(1)</math>
|<math>(0)(1)(0)(1)(0)(1)</math>
|<math>\omega ^3</math>
|<math>\omega ^3</math>
|
|
|-
|-
|<math>(0)(1)(1)</math>
|<math>(0)(1)(1)</math>
|<math>\omega ^\omega</math>
|<math>\omega ^\omega</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)</math>
|<math>(0)(1)(1)(0)</math>
|<math>\omega ^\omega+1</math>
|<math>\omega ^\omega+1</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(0)(1)</math>
|<math>(0)(1)(1)(0)(0)(1)</math>
|<math>\omega ^\omega+\omega</math>
|<math>\omega ^\omega+\omega</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(0)(1)(0)(1)</math>
|<math>(0)(1)(1)(0)(0)(1)(0)(1)</math>
|<math>\omega ^\omega+\omega\times 2</math>
|<math>\omega ^\omega+\omega\times 2</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(0)(1)(1)</math>
|<math>\omega ^\omega \times 2</math>
|<math>\omega ^\omega \times 2</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)</math>
|<math>(0)(1)(1)(0)(1)</math>
|<math>\omega ^{\omega +1}</math>
|<math>\omega ^{\omega +1}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(0)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(0)(1)</math>
|<math>\omega ^{\omega +1}+\omega</math>
|<math>\omega ^{\omega +1}+\omega</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)</math>
|<math>\omega ^{\omega +1}+\omega^{\omega}</math>
|<math>\omega ^{\omega +1}+\omega^{\omega}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)(0)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(0)(1)(1)(0)(1)</math>
|<math>\omega ^{\omega +1}\times 2</math>
|<math>\omega ^{\omega +1}\times 2</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(1)</math>
|<math>\omega ^{\omega +2}</math>
|<math>\omega ^{\omega +2}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega \times 2}</math>
|<math>\omega ^{\omega \times 2}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)</math>
|<math>\omega ^{\omega \times 2+1}</math>
|<math>\omega ^{\omega \times 2+1}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega \times 3}</math>
|<math>\omega ^{\omega \times 3}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega ^2}</math>
|<math>\omega ^{\omega ^2}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega ^2+\omega}</math>
|<math>\omega ^{\omega ^2+\omega}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega ^2\times 2}</math>
|<math>\omega ^{\omega ^2\times 2}</math>
|
|
|-
|-
|<math>(0)(1)(1)(0)(1)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(0)(1)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega ^3}</math>
|<math>\omega ^{\omega ^3}</math>
|
|
|-
|-
|<math>(0)(1)(1)(1)</math>
|<math>(0)(1)(1)(1)</math>
|<math>\omega ^{\omega ^\omega}</math>
|<math>\omega ^{\omega ^\omega}</math>
|
|
|-
|-
|<math>(0)(1)(1)(1)(0)(1)(1)</math>
|<math>(0)(1)(1)(1)(0)(1)(1)</math>
|<math>\omega ^{\omega ^{\omega+1}}</math>
|<math>\omega ^{\omega ^{\omega+1}}</math>
|
|
|-
|-
|<math>(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)(1)</math>
|<math>(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)(1)</math>
|<math>\omega ^{\omega ^{\omega\times 2}}</math>
|<math>\omega ^{\omega ^{\omega\times 2}}</math>
|
|
|-
|-
|<math>(0)(1)(1)(1)(0)(1)(1)(1)</math>
|<math>(0)(1)(1)(1)(0)(1)(1)(1)</math>
|<math>\omega ^{\omega ^{\omega^2}}</math>
|<math>\omega ^{\omega ^{\omega^2}}</math>
|
|
|-
|-
|<math>(0)(1)(1)(1)(1)</math>
|<math>(0)(1)(1)(1)(1)</math>
|<math>\omega ^{\omega ^{\omega^\omega}}</math>
|<math>\omega ^{\omega ^{\omega^\omega}}</math>
|
|
|-
|-
|<math>(0)(1)(2)</math>
|<math>(0)(1)(2)</math>
|<math>\varepsilon_0</math>
|<math>\varepsilon_0</math>
|
|
|}
|}


=== 2. ===
=== Part 2 ===
{| class="wikitable"
{| class="wikitable"
|+
!BHM
!BHM
!veblen函数
!Veblen 函数
!
!
!
!
第215行: 第135行:
|<math>(0)(1)(2)(0)(0)(1)</math>
|<math>(0)(1)(2)(0)(0)(1)</math>
|<math>\varepsilon_0 + \omega</math>
|<math>\varepsilon_0 + \omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(0)(1)(1)</math>
|<math>(0)(1)(2)(0)(0)(1)(1)</math>
|<math>\varepsilon_0 +\omega^2</math>
|<math>\varepsilon_0 +\omega^2</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(0)(1)(2)</math>
|<math>\varepsilon_0 \times 2</math>
|<math>\varepsilon_0 \times 2</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)</math>
|<math>(0)(1)(2)(0)(1)</math>
|<math>\varepsilon_0 \times \omega</math>
|<math>\varepsilon_0 \times \omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(0)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(0)(1)(1)</math>
|<math>\varepsilon_0 \times \omega^\omega</math>
|<math>\varepsilon_0 \times \omega^\omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(0)(1)(2)</math>
|<math>\varepsilon_0 ^2</math>
|<math>\varepsilon_0 ^2</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(0)(1)(2)</math>
|<math>\varepsilon_0 ^3</math>
|<math>\varepsilon_0 ^3</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(1)</math>
|<math>\varepsilon_0 ^\omega</math>
|<math>\varepsilon_0 ^\omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)</math>
|<math>\varepsilon_0 ^{\omega+1}</math>
|<math>\varepsilon_0 ^{\omega+1}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)(0)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)(0)(1)(1)</math>
|<math>\varepsilon_0 ^{\omega\times 2}</math>
|<math>\varepsilon_0 ^{\omega\times 2}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)</math>
|<math>\varepsilon_0 ^{\omega^2}</math>
|<math>\varepsilon_0 ^{\omega^2}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(1)(1)</math>
|<math>\varepsilon_0 ^{\omega^\omega}</math>
|<math>\varepsilon_0 ^{\omega^\omega}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
|<math>\varepsilon_0 ^{\varepsilon_0}</math>
|<math>\varepsilon_0 ^{\varepsilon_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(1)(1)</math>
|<math>\varepsilon_0 ^{\varepsilon_0\times \omega}</math>
|<math>\varepsilon_0 ^{\varepsilon_0\times \omega}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(1)(1)(0)(1)(2)</math>
|<math>\varepsilon_0 ^{\varepsilon_0^2}</math>
|<math>\varepsilon_0 ^{\varepsilon_0^2}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(1)(1)(1)</math>
|<math>\varepsilon_0 ^{\varepsilon_0^\omega}</math>
|<math>\varepsilon_0 ^{\varepsilon_0^\omega}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(1)(1)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(1)(1)(1)(0)(1)(2)</math>
|<math>\varepsilon_0 ^{\varepsilon_0^{\varepsilon_0}}</math>
|<math>\varepsilon_0 ^{\varepsilon_0^{\varepsilon_0}}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_1 </math>
|<math>\varepsilon_1 </math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)</math>
|<math>\varepsilon_1 \times \omega</math>
|<math>\varepsilon_1 \times \omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)</math>
|<math>\varepsilon_1 \times \varepsilon_0</math>
|<math>\varepsilon_1 \times \varepsilon_0</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
|<math>\varepsilon_1 \times \varepsilon_0^{\varepsilon_0}</math>
|<math>\varepsilon_1 \times \varepsilon_0^{\varepsilon_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_1 ^2</math>
|<math>\varepsilon_1 ^2</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)</math>
|<math>\varepsilon_1 ^\omega</math>
|<math>\varepsilon_1 ^\omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)</math>
|<math>\varepsilon_1 ^{\varepsilon_0}</math>
|<math>\varepsilon_1 ^{\varepsilon_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_1 ^{\varepsilon_1}</math>
|<math>\varepsilon_1 ^{\varepsilon_1}</math>
|
|
|-
|-
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(0)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_2</math>
|<math>\varepsilon_2</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)</math>
|<math>\varepsilon_\omega </math>
|<math>\varepsilon_\omega </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(0)(1)(2)</math>
|<math>(0)(1)(2)(1)(0)(1)(2)</math>
|<math>\varepsilon_{\omega +1} </math>
|<math>\varepsilon_{\omega +1} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(0)(1)(2)(0)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(0)(1)(2)(0)(1)(2)(1)</math>
|<math>\varepsilon_{\omega \times 2} </math>
|<math>\varepsilon_{\omega \times 2} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(0)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(0)(1)(2)(1)</math>
|<math>\varepsilon_{\omega ^2} </math>
|<math>\varepsilon_{\omega ^2} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)</math>
|<math>(0)(1)(2)(1)(1)</math>
|<math>\varepsilon_{\omega ^\omega} </math>
|<math>\varepsilon_{\omega ^\omega} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\varepsilon_0} </math>
|<math>\varepsilon_{\varepsilon_0} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)</math>
|<math>\varepsilon_{\varepsilon_0 \times \omega} </math>
|<math>\varepsilon_{\varepsilon_0 \times \omega} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\varepsilon_0 ^2} </math>
|<math>\varepsilon_{\varepsilon_0 ^2} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)</math>
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)</math>
|<math>\varepsilon_{\varepsilon_0 ^ \omega} </math>
|<math>\varepsilon_{\varepsilon_0 ^ \omega} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\varepsilon_0 ^ {\varepsilon_0}} </math>
|<math>\varepsilon_{\varepsilon_0 ^ {\varepsilon_0}} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\varepsilon_1} </math>
|<math>\varepsilon_{\varepsilon_1} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(1)(2)(1)</math>
|<math>\varepsilon_{\varepsilon_\omega} </math>
|<math>\varepsilon_{\varepsilon_\omega} </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
|<math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)</math>
|<math>\zeta_0 </math>
|<math>\zeta_0 </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)</math>
|<math>\zeta_0 </math>
|<math>\zeta_0 </math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(0)(1)(2)(1)(2)</math>
|<math>\zeta_0 ^2</math>
|<math>\zeta_0 ^2</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(1)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(1)</math>
|<math>\zeta_0 ^\omega</math>
|<math>\zeta_0 ^\omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(1)(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(1)(0)(1)(2)(1)(2)</math>
|<math>\zeta_0 ^{\zeta_0}</math>
|<math>\zeta_0 ^{\zeta_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_{\zeta_0 +1}</math>
|<math>\varepsilon_{\zeta_0 +1}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_{\zeta_0 +1}</math>
|<math>\varepsilon_{\zeta_0 +1}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(0)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(0)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\zeta_0 +\varepsilon_0}</math>
|<math>\varepsilon_{\zeta_0 +\varepsilon_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)</math>
|<math>\varepsilon_{\zeta_0 \times \omega}</math>
|<math>\varepsilon_{\zeta_0 \times \omega}</math>
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(2)</math>
|<math>\varepsilon_{\zeta_0 ^2}</math>
|<math>\varepsilon_{\zeta_0 ^2}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(2)</math>
|<math>\varepsilon_{\zeta_0 ^{\zeta_0}}</math>
|<math>\varepsilon_{\zeta_0 ^{\zeta_0}}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(2)</math>
|<math>\varepsilon_{\varepsilon_{\zeta_0 +1}}</math>
|<math>\varepsilon_{\varepsilon_{\zeta_0 +1}}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math>
|<math>\zeta_1</math>
|<math>\zeta_1</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(2)(1)</math>
|<math>\zeta_\omega</math>
|<math>\zeta_\omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(1)(2)</math>
|<math>\zeta_{\varepsilon_0}</math>
|<math>\zeta_{\varepsilon_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(1)(2)(1)(2)</math>
|<math>\zeta_{\zeta_0}</math>
|<math>\zeta_{\zeta_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)</math>
|<math>\eta_0</math>
|<math>\eta_0</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)</math>
|<math>\varepsilon_{\eta_0+1}</math>
|<math>\varepsilon_{\eta_0+1}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)</math>
|<math>\zeta_{\eta_0+1}</math>
|<math>\zeta_{\eta_0+1}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)(1)(2)</math>
|<math>\eta_1</math>
|<math>\eta_1</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)(1)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)(1)</math>
|<math>\eta_\omega</math>
|<math>\eta_\omega</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)(1)(1)(2)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)(1)(1)(2)(1)(2)(1)(2)</math>
|<math>\eta_{\eta_0}</math>
|<math>\eta_{\eta_0}</math>
|
|
|-
|-
|<math>(0)(1)(2)(1)(2)(1)(2)(1)(2)</math>
|<math>(0)(1)(2)(1)(2)(1)(2)(1)(2)</math>
|<math>\varphi(4,0)</math>
|<math>\varphi(4,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)</math>
|<math>(0)(1)(2)(2)</math>
|<math>\varphi(\omega,0)</math>
|<math>\varphi(\omega,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(0)(1)(2)</math>
|<math>(0)(1)(2)(2)(0)(1)(2)</math>
|<math>\varphi(1,\varphi(\omega,0)+1)</math>
|<math>\varphi(1,\varphi(\omega,0)+1)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(0)(1)(2)(2)</math>
|<math>(0)(1)(2)(2)(0)(1)(2)(2)</math>
|<math>\varphi(\omega,1)</math>
|<math>\varphi(\omega,1)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(1)</math>
|<math>(0)(1)(2)(2)(1)</math>
|<math>\varphi(\omega,\omega)</math>
|<math>\varphi(\omega,\omega)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(1)(1)(2)</math>
|<math>(0)(1)(2)(2)(1)(1)(2)</math>
|<math>\varphi(\omega,\varepsilon_0)</math>
|<math>\varphi(\omega,\varepsilon_0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(1)(1)(2)(1)(2)(2)</math>
|<math>(0)(1)(2)(2)(1)(1)(2)(1)(2)(2)</math>
|<math>\varphi(\omega,\varphi(\omega,0))</math>
|<math>\varphi(\omega,\varphi(\omega,0))</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(1)(2)</math>
|<math>(0)(1)(2)(2)(1)(2)</math>
|<math>\varphi(\omega+1,0)</math>
|<math>\varphi(\omega+1,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(1)(2)(1)(2)(2)</math>
|<math>(0)(1)(2)(2)(1)(2)(1)(2)(2)</math>
|<math>\varphi(\omega\times 2,0)</math>
|<math>\varphi(\omega\times 2,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(1)(2)(2)</math>
|<math>(0)(1)(2)(2)(1)(2)(2)</math>
|<math>\varphi(\omega^2,0)</math>
|<math>\varphi(\omega^2,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(2)(2)</math>
|<math>(0)(1)(2)(2)(2)</math>
|<math>\varphi(\omega^\omega,0)</math>
|<math>\varphi(\omega^\omega,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(3)</math>
|<math>(0)(1)(2)(3)</math>
|<math>\varphi(\varepsilon_0,0)</math>
|<math>\varphi(\varepsilon_0,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(3)(1)(2)(3)</math>
|<math>(0)(1)(2)(3)(1)(2)(3)</math>
|<math>\varphi(\varepsilon_1,0)</math>
|<math>\varphi(\varepsilon_1,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(3)(2)(3)</math>
|<math>(0)(1)(2)(3)(2)(3)</math>
|<math>\varphi(\zeta_0,0)</math>
|<math>\varphi(\zeta_0,0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(3)(3)</math>
|<math>(0)(1)(2)(3)(3)</math>
|<math>\varphi(\varphi(\omega,0),0)</math>
|<math>\varphi(\varphi(\omega,0),0)</math>
|
|
|-
|-
|<math>(0)(1)(2)(3)(4)</math>
|<math>(0)(1)(2)(3)(4)</math>
|<math>\varphi(\varphi(\varepsilon_0,0),0)</math>
|<math>\varphi(\varphi(\varepsilon_0,0),0)</math>
|
|
|-
|-
|<math>(0,0)(1,1)</math>
|<math>(0,0)(1,1)</math>
|<math>\varphi(1,0,0)</math>
|<math>\varphi(1,0,0)</math>
|
|
|}
|}


=== 3. ===
=== Part 3 ===
{| class="wikitable"
{| class="wikitable"
|+
!BHM
!BHM
!veblen函数
!Veblen 函数
|-
|-
|<math>(0,0)(1,1)(0,0)</math>
|<math>(0,0)(1,1)(0,0)</math>

2025年7月27日 (日) 12:36的版本

本条目展示 BHM 的强度的列表分析。

Part 1

BHM Veblen 函数
(0) 1
(0)(0) 2
(0)(0)(0) 3
(0)(1) ω
(0)(1)(0) ω+1
(0)(1)(0)(0) ω+2
(0)(1)(0)(0)(1) ω×2
(0)(1)(0)(0)(1)(0) ω×2+1
(0)(1)(0)(0)(1)(0)(0)(1) ω×3
(0)(1)(0)(1) ω2
(0)(1)(0)(1)(0) ω2+1
(0)(1)(0)(1)(0)(0)(1) ω2+ω
(0)(1)(0)(1)(0)(0)(1)(0)(0)(1) ω2+ω×2
(0)(1)(0)(1)(0)(0)(1)(0)(1) ω2×2
(0)(1)(0)(1)(0)(0)(1)(0)(1)(0)(0)(1) ω2×2+ω
(0)(1)(0)(1)(0)(1) ω3
(0)(1)(1) ωω
(0)(1)(1)(0) ωω+1
(0)(1)(1)(0)(0)(1) ωω+ω
(0)(1)(1)(0)(0)(1)(0)(1) ωω+ω×2
(0)(1)(1)(0)(0)(1)(1) ωω×2
(0)(1)(1)(0)(1) ωω+1
(0)(1)(1)(0)(1)(0)(0)(1) ωω+1+ω
(0)(1)(1)(0)(1)(0)(0)(1)(1) ωω+1+ωω
(0)(1)(1)(0)(1)(0)(0)(1)(1)(0)(1) ωω+1×2
(0)(1)(1)(0)(1)(0)(1) ωω+2
(0)(1)(1)(0)(1)(0)(1)(1) ωω×2
(0)(1)(1)(0)(1)(0)(1)(1)(0)(1) ωω×2+1
(0)(1)(1)(0)(1)(0)(1)(1)(0)(1)(0)(1)(1) ωω×3
(0)(1)(1)(0)(1)(1) ωω2
(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1) ωω2+ω
(0)(1)(1)(0)(1)(1)(0)(1)(0)(1)(1) ωω2×2
(0)(1)(1)(0)(1)(1)(0)(1)(1) ωω3
(0)(1)(1)(1) ωωω
(0)(1)(1)(1)(0)(1)(1) ωωω+1
(0)(1)(1)(1)(0)(1)(1)(0)(1)(1)(1) ωωω×2
(0)(1)(1)(1)(0)(1)(1)(1) ωωω2
(0)(1)(1)(1)(1) ωωωω
(0)(1)(2) ε0

Part 2

BHM Veblen 函数
(0)(1)(2)(0)(0)(1) ε0+ω
(0)(1)(2)(0)(0)(1)(1) ε0+ω2
(0)(1)(2)(0)(0)(1)(2) ε0×2
(0)(1)(2)(0)(1) ε0×ω
(0)(1)(2)(0)(1)(0)(1)(1) ε0×ωω
(0)(1)(2)(0)(1)(0)(1)(2) ε02
(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(0)(1)(2) ε03
(0)(1)(2)(0)(1)(1) ε0ω
(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2) ε0ω+1
(0)(1)(2)(0)(1)(1)(0)(1)(0)(1)(2)(0)(1)(1) ε0ω×2
(0)(1)(2)(0)(1)(1)(0)(1)(1) ε0ω2
(0)(1)(2)(0)(1)(1)(0)(1)(1)(1) ε0ωω
(0)(1)(2)(0)(1)(1)(0)(1)(2) ε0ε0
(0)(1)(2)(0)(1)(1)(1) ε0ε0×ω
(0)(1)(2)(0)(1)(1)(1)(0)(1)(2) ε0ε02
(0)(1)(2)(0)(1)(1)(1)(1) ε0ε0ω
(0)(1)(2)(0)(1)(1)(1)(1)(0)(1)(2) ε0ε0ε0
(0)(1)(2)(0)(1)(2) ε1
(0)(1)(2)(0)(1)(2)(0)(1) ε1×ω
(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2) ε1×ε0
(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(1)(0)(1)(2) ε1×ε0ε0
(0)(1)(2)(0)(1)(2)(0)(1)(0)(1)(2)(0)(1)(2) ε12
(0)(1)(2)(0)(1)(2)(0)(1)(1) ε1ω
(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2) ε1ε0
(0)(1)(2)(0)(1)(2)(0)(1)(1)(0)(1)(2)(0)(1)(2) ε1ε1
(0)(1)(2)(0)(1)(2)(0)(1)(2) ε2
(0)(1)(2)(1) εω
(0)(1)(2)(1)(0)(1)(2) εω+1
(0)(1)(2)(1)(0)(1)(2)(0)(1)(2)(1) εω×2
(0)(1)(2)(1)(0)(1)(2)(1) εω2
(0)(1)(2)(1)(1) εωω
(0)(1)(2)(1)(1)(2) εε0
(0)(1)(2)(1)(1)(2)(0)(1)(2)(1) εε0×ω
(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(1)(2) εε02
(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1) εε0ω
(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(1)(2) εε0ε0
(0)(1)(2)(1)(1)(2)(0)(1)(2)(1)(1)(2) εε1
(0)(1)(2)(1)(1)(2)(1) εεω
(0)(1)(2)(1)(1)(2)(1)(1)(2) εεε0
(0)(1)(2)(1)(2) ζ0
(0)(1)(2)(1)(2) ζ0
(0)(1)(2)(1)(2)(0)(1)(0)(1)(2)(1)(2) ζ02
(0)(1)(2)(1)(2)(0)(1)(1) ζ0ω
(0)(1)(2)(1)(2)(0)(1)(1)(0)(1)(2)(1)(2) ζ0ζ0
(0)(1)(2)(1)(2)(0)(1)(2) εζ0+1
(0)(1)(2)(1)(2)(0)(1)(2) εζ0+1
(0)(1)(2)(1)(2)(0)(1)(2)(0)(1)(2)(1)(1)(2) εζ0+ε0
(0)(1)(2)(1)(2)(0)(1)(2)(1) εζ0×ω
(0)(1)(2)(1)(2)(0)(1)(2)(1)(0)(1)(2)(1)(2) εζ02
(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(0)(1)(2)(1)(2) εζ0ζ0
(0)(1)(2)(1)(2)(0)(1)(2)(1)(1)(2) εεζ0+1
(0)(1)(2)(1)(2)(0)(1)(2)(1)(2) ζ1
(0)(1)(2)(1)(2)(1) ζω
(0)(1)(2)(1)(2)(1)(1)(2) ζε0
(0)(1)(2)(1)(2)(1)(1)(2)(1)(2) ζζ0
(0)(1)(2)(1)(2)(1)(2) η0
(0)(1)(2)(1)(2)(1)(2)(0)(1)(2) εη0+1
(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2) ζη0+1
(0)(1)(2)(1)(2)(1)(2)(0)(1)(2)(1)(2)(1)(2) η1
(0)(1)(2)(1)(2)(1)(2)(1) ηω
(0)(1)(2)(1)(2)(1)(2)(1)(1)(2)(1)(2)(1)(2) ηη0
(0)(1)(2)(1)(2)(1)(2)(1)(2) φ(4,0)
(0)(1)(2)(2) φ(ω,0)
(0)(1)(2)(2)(0)(1)(2) φ(1,φ(ω,0)+1)
(0)(1)(2)(2)(0)(1)(2)(2) φ(ω,1)
(0)(1)(2)(2)(1) φ(ω,ω)
(0)(1)(2)(2)(1)(1)(2) φ(ω,ε0)
(0)(1)(2)(2)(1)(1)(2)(1)(2)(2) φ(ω,φ(ω,0))
(0)(1)(2)(2)(1)(2) φ(ω+1,0)
(0)(1)(2)(2)(1)(2)(1)(2)(2) φ(ω×2,0)
(0)(1)(2)(2)(1)(2)(2) φ(ω2,0)
(0)(1)(2)(2)(2) φ(ωω,0)
(0)(1)(2)(3) φ(ε0,0)
(0)(1)(2)(3)(1)(2)(3) φ(ε1,0)
(0)(1)(2)(3)(2)(3) φ(ζ0,0)
(0)(1)(2)(3)(3) φ(φ(ω,0),0)
(0)(1)(2)(3)(4) φ(φ(ε0,0),0)
(0,0)(1,1) φ(1,0,0)

Part 3

BHM Veblen 函数
(0,0)(1,1)(0,0) φ(1,0,0)+1
(0,0)(1,1)(0,0)(0,0)(1,1) φ(1,0,0)×2
(0,0)(1,1)(0,0)(1,0) ωφ(1,0,0)+1
(0,0)(1,1)(0,0)(1,0)(1,0) ωωφ(1,0,0)+1
(0,0)(1,1)(0,0)(1,0)(2,0) φ(1,φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(0,0)(1,1) φ(1,φ(1,0,0)×2)
(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(1,0)(2,0) φ(1,φ(1,φ(1,0,0)+1))
(0,0)(1,1)(0,0)(1,0)(2,0)(1,0)(2,0) φ(2,φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(2,0) φ(ω,φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(1,0)(2,0) φ(ω+1,φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(1,0)(2,0)(2,0) φ(ω2,φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(2,0)(2,0) φ(ωω,φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(3,0) φ(φ(1,0),φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(4,0) φ(φ(φ(1,0),0),φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,0)(2,0)(3,0)(4,0)(5,0) φ(φ(φ(φ(1,0),0),0),φ(1,0,0)+1)
(0,0)(1,1)(0,0)(1,1) φ(φ(1,0,0),1)
(0,0)(1,1)(0,0)(1,1)(0,0)(1,1) φ(φ(1,0,0),2)
(0,0)(1,1)(1,0) φ(φ(1,0,0),ω)
(0,0)(1,1)(1,0)(0,0)(1,1) φ(φ(1,0,0),ω+1)
(0,0)(1,1)(1,0)(0,0)(1,1)(0,0)(1,1)(1,0) φ(φ(1,0,0),ω×2)
(0,0)(1,1)(1,0)(0,0)(1,1)(1,0) φ(φ(1,0,0),ω2)
(0,0)(1,1)(1,0)(1,0) φ(φ(1,0,0),ωω)
(0,0)(1,1)(1,0)(1,0)(1,0) φ(φ(1,0,0),ωωω)
(0,0)(1,1)(1,0)(1,0)(2,0) φ(φ(1,0,0),φ(1,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(1,0)(2,0) φ(φ(1,0,0),φ(2,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(2,0) φ(φ(1,0,0),φ(ω,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,0) φ(φ(1,0,0),φ(φ(1,0),0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,0)(4,0) φ(φ(1,0,0),φ(φ(φ(1,0),0),0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(1,0,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1) φ(φ(1,0,0),φ(1,0,0)+1)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1) φ(φ(1,0,0),φ(1,0,0)+2)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)(1,0) φ(φ(1,0,0),φ(1,0,0)+ω)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(1,0,0)×2)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0) φ(φ(1,0,0),ωφ(1,0,0)+1)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0) φ(φ(1,0,0),φ(1,φ(1,0,0)+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(1,0)(2,0) φ(φ(1,0,0),φ(2,φ(1,0,0)+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(2,0) φ(φ(1,0,0),φ(ω,φ(1,0,0)+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,0) φ(φ(1,0,0),φ(φ(1,0),φ(1,0,0)+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0) φ(φ(1,0,0),φ(φ(1,0,0),ω))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),ω+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0) φ(φ(1,0,0),φ(φ(1,0,0),ωω))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0)))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(2,0) φ(φ(1,0,0),φ(φ(1,0,0),φ(ω,0)))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,0)))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(φ(1,0,0),1)))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,0)+1,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1) φ(φ(1,0,0),φ(φ(1,0,0)+1,0)+1)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,0),φ(φ(1,0,0)+1,0)×2)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0) φ(φ(1,0,0),ωφ(φ(1,0,0)+1,0)+1)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0) φ(φ(1,0,0),φ(1,φ(φ(1,0,0)+1,0)+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(φ(1,0,0)+1,0)+1))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,0),φ(φ(1,0,0),φ(φ(1,0,0)+1,0)×2))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,φ(φ(1,0,0)+1,0)+1)))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(φ(1,0,0),φ(φ(1,0,0)+1,0)+1)))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,0)+1,1)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0) φ(φ(1,0,0)+1,ω)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(1,0)(2,0) φ(φ(1,0,0)+1,φ(1,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0)+1,φ(1,0,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,0)+1,φ(φ(1,0,0)+1,0))
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0) φ(φ(1,0,0)+2,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(2,0) φ(φ(1,0,0)+ω,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,0) φ(φ(1,0,0)+φ(1,0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1) φ(φ(1,0,0)×2,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1) φ(φ(1,0,0)×3,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(2,0) φ(ωφ(1,0,0)+1,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,0) φ(φ(1,φ(1,0,0)+1),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1) φ(φ(φ(1,0,0),1),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(φ(1,0,0),1)+1,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)(2,0) φ(ωφ(φ(1,0,0),1)+1,0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)(3,0) φ(φ(1,φ(φ(1,0,0),1)+1),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1) φ(φ(φ(1,0,0),2),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0) φ(φ(φ(1,0,0),ω),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(1,0)(2,0)(3,1) φ(φ(φ(1,0,0),ω+1),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0) φ(φ(φ(1,0,0),ω×2),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0) φ(φ(φ(1,0,0),ωω),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,0) φ(φ(φ(1,0,0),φ(1,0)),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1) φ(φ(φ(1,0,0),φ(1,0,0)),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1) φ(φ(φ(1,0,0),φ(1,0,0)+1),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0) φ(φ(φ(1,0,0),ωφ(1,0,0)+1),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0)(2,0)(3,0) φ(φ(φ(1,0,0),φ(1,φ(1,0,0)+1)),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1) φ(φ(φ(1,0,0),φ(φ(1,0,0),1)),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(2,0) φ(φ(φ(1,0,0),φ(φ(1,0,0),ω)),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(2,0)(3,1)(2,0)(2,0)(3,1) φ(φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,0))),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0) φ(φ(φ(1,0,0)+1,0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)(2,0)(3,0) φ(φ(φ(1,0,0)+2,0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)(2,0)(3,1) φ(φ(φ(1,0,0)×2,0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,0)(3,0) φ(φ(ωφ(1,0,0)+1,0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,1) φ(φ(φ(φ(1,0,0),1),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0) φ(φ(φ(φ(1,0,0),ω),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0) φ(φ(φ(φ(1,0,0),φ(1,0)),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1) φ(φ(φ(φ(1,0,0),φ(1,0,0)),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(2,0)(3,1) φ(φ(φ(φ(1,0,0),φ(1,0,0)+1),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1) φ(φ(φ(φ(1,0,0),φ(φ(1,0,0),1)),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0) φ(φ(φ(φ(1,0,0),φ(φ(1,0,0),ω)),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)(4,0) φ(φ(φ(φ(1,0,0)+1,0),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)(4,0)(5,0) φ(φ(φ(φ(1,φ(1,0,0)+1),0),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(3,0)(4,0)(5,1) φ(φ(φ(φ(φ(1,0,0),1),0),0),0)
(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(3,0)(3,0)(4,0)(5,1)(4,0)(5,1) φ(φ(φ(φ(φ(φ(1,0,0),1),0),0),0),0)
(0,0)(1,1)(1,0)(1,0)(2,1) φ(1,0,1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1) φ(φ(1,0,0),φ(1,0,1)+1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0) φ(φ(1,0,0),ωφ(1,0,1)+1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,1)+1))
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,1)+2))
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,1)+ω))
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,1)×2))
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0) φ(φ(1,0,0),φ(φ(1,0,0),ωφ(1,0,1)+1))
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,1)(3,1) φ(φ(1,0,0),φ(φ(1,0,0),φ(φ(1,0,0),φ(1,0,1)+1)))
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,0)+1,φ(1,0,1)+1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(1,0)(2,0)(3,1) φ(φ(1,0,0)×2,φ(1,0,1)+1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0)(3,1) φ(φ(φ(1,0,0),1),φ(1,0,1)+1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,0)(3,1)(2,0)(3,1) φ(φ(φ(φ(1,0,0),1),0),φ(1,0,1)+1)
(0,0)(1,1)(1,0)(1,0)(2,1)(0,0)(1,1)(1,0)(1,0)(2,1) φ(φ(1,0,1),1)
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0) φ(φ(1,0,1),ω)
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0) φ(φ(1,0,1),φ(1,0))
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,1),φ(1,0,0))
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,1),φ(φ(1,0,0),1))
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(1,0) φ(φ(1,0,1),φ(φ(1,0,0),ω))
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(1,0)(1,0)(2,0)(3,1) φ(φ(1,0,1),φ(φ(1,0,0),φ(1,0,0)))
(0,0)(1,1)(1,0)(1,0)(2,1)(1,0)(1,0)(2,0)(3,1)(1,0)(2,0) φ(φ(1,0,1),φ(φ(1,0,0)+1,0))