SSS 分析:修订间差异
来自Googology Wiki
更多操作
修正公式格式 |
小无编辑摘要 |
||
| (未显示同一用户的2个中间版本) | |||
| 第1行: | 第1行: | ||
本条目展示 SSS(单行 [[ | 本条目展示 SSS(单行 [[BHM]])分析。 | ||
=== Part 1 === | === Part 1 === | ||
| 第522行: | 第522行: | ||
* <math>0,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega))</math> | * <math>0,1,2,0,1,2,0,1,1,2,1=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega)\times\omega))</math> | ||
* <math>0,1,2,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+1)))</math> | * <math>0,1,2,0,1,2,0,1,1,2,1,1,2=\psi(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+\psi_1(\Omega_2^\Omega+1)))</math> | ||
* <math>0,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2) | * <math>0,1,2,0,1,2,0,1,1,2,1,2=\psi(\Omega_2^\Omega+\Omega_2)</math> | ||
* <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2=\psi(\Omega_2^\Omega+\Omega_2+\Omega^\Omega)</math> | |||
* <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega))</math> | * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega))</math> | ||
* <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega+1))</math> | * <math>0,1,2,0,1,2,0,1,1,2,1,2,0,1,0,1,2,0,1,2,0,1,1,2=\psi(\Omega_2^\Omega+\Omega_2+\psi_1(\Omega_2^\Omega+1))</math> | ||
| 第571行: | 第572行: | ||
* <math>0,1,2,1,1,2,1=\psi(\Omega_2^\Omega\times\psi(\omega))</math> | * <math>0,1,2,1,1,2,1=\psi(\Omega_2^\Omega\times\psi(\omega))</math> | ||
* <math>0,1,2,1,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi(\psi(0)))</math> | * <math>0,1,2,1,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi(\psi(0)))</math> | ||
* <math>0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega))</math> | * <math>0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega))</math> | ||
* <math>0,1,2,1,1,2,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega\times\psi(\Omega)))</math> | * <math>0,1,2,1,1,2,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi(\Omega\times\psi(\Omega)))</math> | ||
| 第642行: | 第642行: | ||
* <math>0,1,2,1,2,0,1,2,0,1,2,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\Omega))</math> | * <math>0,1,2,1,2,0,1,2,0,1,2,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\Omega+\Omega_2^\Omega\times\psi(\Omega_2^\Omega\times\Omega))</math> | ||
* <math>0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega\times 2)</math> | * <math>0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega\times 2)</math> | ||
* <math>0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega\times3) | * <math>0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega\times3)</math> | ||
* <math>0,1,2,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\Omega\times\omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,0,1,2,1=\psi(\Omega_2^\Omega\times\Omega\times\omega^2)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega^2)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\Omega^\omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\Omega^\Omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(0))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)+\Omega_2^\Omega\times\Omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)\times2)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(0)\times\omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)\times\Omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,0,1,2,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(0)^2)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(0)^\omega)</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(1))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega\times\omega))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,1,1=\psi(\Omega_2^\Omega\times\psi_1(\Omega^\omega))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^2))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\omega))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,3=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^{\psi(\Omega^\Omega)}))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,1,2,3,2,3=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^{\psi(\Omega_2^\Omega\times\Omega)}))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,2=\psi(\Omega_2^{\Omega}\times\psi_1(\Omega_2^\Omega))</math> | |||
* <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega))</math> | * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega))</math> | ||
* <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+1))</math> | * <math>0,1,2,1,2,0,1,2,1,2,0,1,0,1,2,1,2,0,1,1,2=\psi(\Omega_2^\Omega\times\psi_1(\Omega_2^\Omega)+\psi_1(\Omega_2^\Omega\times\Omega+1))</math> | ||
2025年8月30日 (六) 22:35的最新版本
本条目展示 SSS(单行 BHM)分析。