证明论序数:修订间差异
来自Googology Wiki
更多操作
无编辑摘要 |
小无编辑摘要 |
||
(未显示同一用户的1个中间版本) | |||
第471行: | 第471行: | ||
* <math>\mathrm{KPh} = \mathrm{KP} + (\text{recursively hyperinaccessible universe})</math> | * <math>\mathrm{KPh} = \mathrm{KP} + (\text{recursively hyperinaccessible universe})</math> | ||
* <math>\mathrm{KPM} = \mathrm{KP} + (\text{recursively Mahlo universe})</math> | * <math>\mathrm{KPM} = \mathrm{KP} + (\text{recursively Mahlo universe})</math> | ||
* <math>\mathrm{ZBQC} = \mathrm{M}_0 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\mathrm{Choice})</math> | * <math>\mathrm{ZBQC} = \mathrm{M}_0 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\mathrm{Choice})</math><br><math>\mathrm{NFU} + (\mathrm{Infinity}) + (\mathrm{Choice})</math> | ||
* <math>\mathrm{MAC} = \mathrm{M}_1 + (\mathrm{Infinity}) + (\mathrm{Choice}) = \mathrm{ZBQC} + (\text{Transitive Containment})</math> | * <math>\mathrm{MAC} = \mathrm{M}_1 + (\mathrm{Infinity}) + (\mathrm{Choice}) = \mathrm{ZBQC} + (\text{Transitive Containment})</math> | ||
* <math>\mathrm{MOST} = \mathrm{MAC} + (\Delta_0^{\mathrm{set}} - \mathrm{Collection}) = \mathrm{ZBQC} + \mathrm{KP} + (\Sigma_1^{\mathrm{set}} - \mathrm{Separation})</math> | * <math>\mathrm{MOST} = \mathrm{MAC} + (\Delta_0^{\mathrm{set}} - \mathrm{Collection}) = \mathrm{ZBQC} + \mathrm{KP} + (\Sigma_1^{\mathrm{set}} - \mathrm{Separation})</math> | ||
* <math>\mathrm{Z} = \mathrm{S}_1 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\Sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math> | * <math>\mathrm{Z} = \mathrm{S}_1 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\Sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math> | ||
* <math>\mathrm{ZC} = \mathrm{Z} + (\mathrm{Choice}) = \mathrm{ZBQC} + (\sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math> | * <math>\mathrm{ZC} = \mathrm{Z} + (\mathrm{Choice}) = \mathrm{ZBQC} + (\sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math> | ||
* <math>\mathrm{MAC} + \forall m (\beth_{\beth_{m}}\text{ exists})</math> | * <math>\mathrm{MAC} + \forall m (\beth_{\beth_{m}}\text{ exists})</math><br><math>\mathrm{NFU} + (\mathrm{Infinity}) + (\mathrm{Choice})</math> | ||
* <math>\mathrm{Z} + (\Pi_2^{\mathrm{set}} - \mathrm{Replacement})</math><br><math>\mathrm{NFU}^* = \mathrm{NFU} + (\mathrm{Counting}) + (\mathrm{Strongly\ Cantorian\ Separation})</math> | |||
* <math>\mathrm{Z} + (\Pi_2^{\mathrm{set}} - \mathrm{Replacement})</math> | |||
* <math>\mathrm{Z} + (\Pi_m^{\mathrm{set}} - \mathrm{Replacement})</math> | * <math>\mathrm{Z} + (\Pi_m^{\mathrm{set}} - \mathrm{Replacement})</math> | ||
* <math>\mathrm{ZF} = \mathrm{Z} + (\Pi_\omega^{\mathrm{set}} - \mathrm{Replacement})</math> | * <math>\mathrm{ZF} = \mathrm{Z} + (\Pi_\omega^{\mathrm{set}} - \mathrm{Replacement})</math><br><math>\mathrm{AST}</math><br><math>\mathrm{GB}</math> | ||
* <math>\mathrm{ZFC} = \mathrm{ZF} + (\text{Choice})</math><br><math>\mathrm{NBG} = \mathrm{GBC} = \mathrm{GB} + (\text{Global Choice})</math> | |||
* <math>\mathrm{ZFC} = \mathrm{ZF} + (\text{Choice})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a worldly cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a worldly cardinal})</math> | ||
* <math>\mathrm{NBG} + (\text{there is a stationary proper class of worldly cardinals})</math> | * <math>\mathrm{NBG} + (\text{there is a stationary proper class of worldly cardinals})</math> | ||
* <math>\mathrm{NBG} + (\text{Class Forcing Theorem})</math> | * <math>\mathrm{NBG} + (\text{Class Forcing Theorem})</math><br><math>\mathrm{NBG} + (\text{Clopen Class Game Determinacy})</math> | ||
* <math>\mathrm{MK} = \mathrm{NBG} + (\Pi_{\infty}^{\mathrm{class}} - \mathrm{CA})</math> | * <math>\mathrm{MK} = \mathrm{NBG} + (\Pi_{\infty}^{\mathrm{class}} - \mathrm{CA})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is an inaccessible cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is an inaccessible cardinal})</math><br><math>\mathrm{ZFC} + (\Pi_{1}^{1}\ \text{Perfect Set Property})</math><br><math>\mathrm{ZFC} + (\Sigma_{3}^{1}\ \text{Lebesgue measurability})</math> | ||
* <math>\mathrm{ZFC} + (\text{there are } \omega\ \text{inaccessible cardinals})</math><br><math>\mathrm{ZFC} + (\forall\alpha(\omega \leq \alpha \leq \aleph_{\omega} \Rightarrow |\mathrm{V}_{\alpha} \cap L| = |\alpha|))</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a proper class of inaccessible cardinals})</math><br><math>\mathrm{ZFC} + (\text{Grothendieck Universe Axiom})</math> | |||
* <math>\mathrm{ZFC} + (\text{there are } \omega\ \text{inaccessible cardinals})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a proper class of inaccessible cardinals})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a } \Sigma_{n}^{\mathrm{set}}\text{-reflecting cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a } \Sigma_{n}^{\mathrm{set}}\text{-reflecting cardinal})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is a } \sigma_{\omega}^{\mathrm{set}}\text{-reflecting cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a } \sigma_{\omega}^{\mathrm{set}}\text{-reflecting cardinal})</math><br><math>\mathrm{ZFC} + (\text{Ord is Mahlo})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is an uplifting cardinal})</math><br><math>\mathrm{ZFC} + (\text{Resurrection Axioms})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an uplifting cardinal})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a Mahlo cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a Mahlo cardinal})</math> | ||
* <math>\mathrm{SMAH} = \mathrm{ZFC} + (\text{there is a } n\text{-Mahlo cardinal})_{n\in\mathbb{N}}</math> | * <math>\mathrm{SMAH} = \mathrm{ZFC} + (\text{there is a } n\text{-Mahlo cardinal})_{n\in\mathbb{N}}</math><br><math>\mathrm{NFUA} = \mathrm{NFU} + (\text{Infinity}) + (\text{Cantorian Sets})</math> | ||
* <math>\mathrm{SMAH}^{+} = \mathrm{ZFC} + \forall n(\text{there is a } n\text{-Mahlo cardinal})</math> | * <math>\mathrm{SMAH}^{+} = \mathrm{ZFC} + \forall n(\text{there is a } n\text{-Mahlo cardinal})</math> | ||
* <math>\mathrm{MK} + (\text{Ord is weakly compact})</math> | * <math>\mathrm{MK} + (\text{Ord is weakly compact})</math><br><math>\mathrm{GPK}_{\infty}^{+} = \mathrm{GPK}^{+} + (\text{Infinity})</math><br><math>\mathrm{NFUB} =\mathrm{NFU} +(\text{Infinity}) + (\text{Cantorian Sets}) + (\text{Small Ordinals})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is a weakly compact cardinal})</math><br><math>\mathrm{ZFC} + (\omega_{2}\ \text{has the tree property})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a weakly compact cardinal})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a totally indescribable cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a totally indescribable cardinal})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is a subtle cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a subtle cardinal})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is an ineffable cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is an ineffable cardinal})</math> | ||
* <math>\mathrm{ZFC} + \forall\alpha(\alpha < \omega_{1} \Rightarrow \text{there is a } \alpha\text{- | * <math>\mathrm{ZFC} + \forall\alpha(\alpha < \omega_{1} \Rightarrow \text{there is a } \alpha\text{-Erdős cardinal})</math> | ||
* <math>\mathrm{ZFC} + (0^{\sharp}\ \text{exists})</math> | * <math>\mathrm{ZFC} + (0^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (L \models \aleph_{\omega}\ \text{is regular})</math><br><math>\mathrm{ZFC} + \forall \alpha (\alpha \geq \omega \Longrightarrow |V_{\alpha} \cap L| = |\alpha|)</math><br><math>\mathrm{ZFC} + (\text{parameter-free } \Sigma_{1}^{1}\text{-determinacy})</math> | ||
* <math>\mathrm{ZFC} + \forall x\ (x \in \mathbb{R} \Longrightarrow x^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (\Sigma_{1}^{1}\text{-determinacy})</math> | |||
* <math>\mathrm{ZFC} + \forall x\ (x^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (\Sigma_{2}^{1}\ \text{universal Baireness})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an } \omega_{1}\text{-Erdős cardinal})</math><br><math>\mathrm{ZFC} + (\text{Chang's Conjecture})</math> | |||
* <math>\mathrm{ZFC} + \forall x\ (x \in \mathbb{R} \Longrightarrow x^{\sharp}\ \text{exists})</math> | |||
* <math>\mathrm{ZFC} + \forall x\ (x^{\sharp}\ \text{exists})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an } \omega_{1}\text{- | |||
* <math>\mathrm{SRP} = \mathrm{ZFC} + (\text{there is cardinal with the } n\text{-stationary Ramsey property})_{n \in \mathbb{N}}</math> | * <math>\mathrm{SRP} = \mathrm{ZFC} + (\text{there is cardinal with the } n\text{-stationary Ramsey property})_{n \in \mathbb{N}}</math> | ||
* <math>\mathrm{SRP}^{+} = \mathrm{ZFC} + \forall n\ (\text{there is a cardinal with the } n\text{-stationary Ramsey property})</math> | * <math>\mathrm{SRP}^{+} = \mathrm{ZFC} + \forall n\ (\text{there is a cardinal with the } n\text{-stationary Ramsey property})</math> | ||
* <math>\mathrm{MK} + (\text{Ord is measurable})</math> | * <math>\mathrm{MK} + (\text{Ord is measurable})</math><br><math>\mathrm{NFUM} = \mathrm{NFU} + (\text{Infinity}) + (\text{Large Ordinals}) + (\text{Small Ordinals})</math> | ||
* <math>\mathrm{ZFM} = \mathrm{ZFC} + (\text{there is a measurable cardinal})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{1}}\ \text{is precipitous})</math><br><math>\mathrm{ZF} + (\omega_{1}\ \text{is measurable})</math> | |||
* <math>\mathrm{ZFM} = \mathrm{ZFC} + (\text{there is a measurable cardinal})</math> | * <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = 2)</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{2}}\ \text{is precipitous})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = \kappa^{++})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{ZFC} + (2^{\aleph_{\omega}} = \aleph_{\omega + 2})</math> | |||
* <math>\mathrm{ZFC} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{2} + (\Delta_{2}^{1}\text{-determinacy})\ (\text{conjectural})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = 2)</math> | * <math>\mathrm{MK} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{3}+ (\text{lightface } \Delta_{2}^{1}\text{-determinacy})</math> | ||
* <math>\mathrm{ZFC} + \neg \mathrm{SCH}</math> | * <math>\mathrm{NBG} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{3}+ (\Delta_{2}^{1}\text{-determinacy})</math> | ||
* <math>\mathrm{ZFC} + (\text{there is a Woodin cardinal})</math><br><math>\mathrm{ZFC} + (\Delta_{2}^{1}\text{-determinacy})</math><br><math>\mathrm{ZFC} + (\mathrm{OD} \models \mathrm{AD})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{1}}\ \text{is } \omega_{2}\text{-saturated})</math> | |||
* <math>\mathrm{ZFC} + (\text{Ord is Woodin})</math> | * <math>\mathrm{ZFC} + (\text{there are } n\ \text{Woodin cardinals})_{n \in \mathbb{N}}</math><br><math>\mathrm{Z}_{2} + (\mathrm{PD})</math> | ||
* <math>\mathrm{ZFC} + (\text{there are } \omega \text{ Woodin cardinals})</math><br><math>\mathrm{ZF} + (\mathrm{AD})</math><br><math>\mathrm{ZFC} + (L(\mathbb{R}) \models \mathrm{AD})</math><br><math>\mathrm{ZFC} + (\mathrm{OD}(\mathbb{R}) \models \mathrm{AD})</math> | |||
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\omega_1)\text{-strongly compact})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_1} \text{ is } \omega_1\text{-dense})</math> | |||
* <math>\mathrm{MK} + (\text{Ord is Woodin})</math> | * <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\mathbb{R})\text{-strongly compact})</math><br><math>\mathrm{ZF} + \mathrm{DC} + (\mathrm{AD}_{\mathbb{R}})</math> | ||
* <math>\mathrm{NBG} + (\text{Ord is Woodin})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a Woodin cardinal})</math> | |||
* <math>\mathrm{ZFC} + (\text{there are } n\ \text{Woodin cardinals})_{n \in \mathbb{N}}</math> | |||
* <math>\mathrm{ZFC} + \text{ | |||
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\omega_1)\text{-strongly compact})</math> | |||
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\mathbb{R})\text{-strongly compact})</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a superstrong cardinal)}</math> | * <math>\mathrm{ZFC} + \text{(there is a superstrong cardinal)}</math> | ||
* <math>\mathrm{ZFC} + \text{(there is a subcompact cardinal)}</math> | * <math>\mathrm{ZFC} + \text{(there is a subcompact cardinal)}</math><br><math>\mathrm{ZFC} + (V = L[\vec{E}]) + \exists\kappa(\neg\square_{\kappa})</math> | ||
* <math>\mathrm{ZFC} + \text{(there is a strongly compact cardinal)}</math><br><math>\mathrm{ZFC} + \text{(Proper Forcing Axiom)}</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a strongly compact cardinal)}</math> | * <math>\mathrm{ZFC} + \text{(there is a supercompact cardinal)}</math><br><math>\mathrm{ZFC} + \text{(Martin's Maximum)}</math> | ||
* <math>\mathrm{ZFC} + \forall n \text{(there is a proper class of } C^{(n)}\text{-extendible cardinals)}</math><br><math>\mathrm{ZFC} + \text{(Vopěnka's Principle)}</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a supercompact cardinal)}</math> | |||
* <math>\mathrm{ZFC} + \forall n \text{(there is a proper class of } C^{(n)}\text{-extendible cardinals)}</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a high-jump cardinal)}</math> | * <math>\mathrm{ZFC} + \text{(there is a high-jump cardinal)}</math> | ||
* <math>\mathrm{HUGE} = \mathrm{ZFC} + \text{( there is a } n\text{-huge cardinal )}_{n\in\mathbb{N}}</math> | * <math>\mathrm{HUGE} = \mathrm{ZFC} + \text{( there is a } n\text{-huge cardinal )}_{n\in\mathbb{N}}</math> | ||
第579行: | 第533行: | ||
* <math>\mathrm{ZF}_j + \mathrm{DC} + \text{(there is a Reinhardt cardinal )}</math> | * <math>\mathrm{ZF}_j + \mathrm{DC} + \text{(there is a Reinhardt cardinal )}</math> | ||
* <math>\mathrm{ZF} + \mathrm{DC} + \text{(there is a Berkeley cardinal)}</math> | * <math>\mathrm{ZF} + \mathrm{DC} + \text{(there is a Berkeley cardinal)}</math> | ||
[[分类:集合论相关]] |
2025年7月27日 (日) 13:21的最新版本
证明论序数(或称证明论强度序数,Proof-Theoretic Ordinal)是衡量形式理论强度的核心工具,通过将理论映射到序数上,刻画其能证明的良序关系的复杂度。该概念源于希尔伯特的证明论计划,旨在通过有限方法证明数学基础理论的一致性,后由阿克曼(Wilhelm Ackermann)和根岑(Gerhard Gentzen)发展为序数分析技术。
定义和性质
对形式理论 ,其证明论序数 ( 或 )定义为能用超限归纳证明的原始递归良序的序型最大值。
证明论序数满足:
- 对任意递归序数 ,理论 能证明“所有序数小于 的原始递归良序关系都是良序的”;对 ,理论 无法证明“所有序数小于 的原始递归良序关系都是良序的”。
- 存在一种递归记号系统,自然表示所有小于 的序数;理论 能通过超限归纳(序数是良序集的序型,满足超限归纳原理:,其中 是任意性质)到 ,证明自身的一致性(即 );理论 能证明所有初等递归函数在小于 的序数上总停止;对任意递归序数 ,至少不满足上述条件中的一条。
- 证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序。
证明论序数表
证明论序数 | 算术论体系 | 集合论体系 | 其他体系 |
---|---|---|---|
ZFC 相关证明论序数: