打开/关闭菜单
打开/关闭外观设置菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

证明论序数:修订间差异

来自Googology Wiki
Tabelog留言 | 贡献
无编辑摘要
Tabelog留言 | 贡献
无编辑摘要
 
(未显示同一用户的4个中间版本)
第2行: 第2行:


=== 定义和性质 ===
=== 定义和性质 ===
序数是良序集的序型,满足超限归纳原理:<math>\forall\alpha(\forall\beta<\alpha(P(\beta)\Rightarrow P(\alpha))\Rightarrow\forall\alpha P(\alpha))</math>,其中 <math>P</math> 是任意性质。
对形式理论 <math>T</math>,其证明论序数 <math>|T|_{\text{ord}}</math>​(<math>|T|</math> <math>\text{PTO}(T)</math>)定义为能用超限归纳证明的原始递归良序的序型最大值。
 
对形式理论 <math>T</math>,其证明论序数 <math>|T|_{\text{ord}}</math>​(在 googology 语境中,可写为 <math>\text{PTO}(T)</math>)定义为满足以下条件的最小序数 <math>\alpha</math>:
 
# 存在一种自然表示序数 <math><\alpha</math> 的递归记号系统
# 通过超限归纳至 <math>\alpha</math>,可证明 <math>T</math> 的一致性(即 <math>T\nvdash\perp</math>)
# <math>T</math> 能证明所有初等递归函数在 <math><\alpha</math> 的序数上总停止
 
或者说,是理论 <math>T</math> 能用超限归纳证明的原始递归良序的序型最大值。


证明论序数满足:
证明论序数满足:


# '''不可达性'''(Inaccessibility):若 <math>|T|_\text{ord}=\alpha</math>,则 <math>T</math> 无法证明“存在序数 <math>\beta</math> 使得 <math>\beta=\alpha</math>”的良序性
# 对任意递归序数 <math>\beta<|T|</math>,理论 <math>T</math> 能证明“所有序数小于 <math>\beta</math> 的原始递归良序关系都是良序的”;对 <math>\alpha=|T|</math>,理论 <math>T</math> 无法证明“所有序数小于 <math>\alpha</math> 的原始递归良序关系都是良序的”。
# '''递归性'''(Recursivity):证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序
# 存在一种递归记号系统,自然表示所有小于 <math>|T|</math> 的序数;理论 <math>T</math> 能通过超限归纳(序数是良序集的序型,满足超限归纳原理:<math>\forall\alpha(\forall\beta<\alpha(P(\beta)\Rightarrow P(\alpha))\Rightarrow\forall\alpha P(\alpha))</math>,其中 <math>P</math> 是任意性质)到 <math>|T|</math>,证明自身的一致性(即 <math>T\nvdash\perp</math>);理论 <math>T</math> 能证明所有初等递归函数在小于 <math>|T|</math> 的序数上总停止;对任意递归序数 <math>\beta<|T|</math>,至少不满足上述条件中的一条。
# 证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序。


=== 证明论序数表 ===
=== 证明论序数表 ===
第24行: 第17行:
! scope="col" |其他体系
! scope="col" |其他体系
|-
|-
| -
|
|<math>Q</math>
|<math>Q</math>
|<math>\rm KP^-</math>
|<math>\rm KP^-</math>
第227行: 第220行:
|<math>\rm \Pi_1^1-CA</math>
|<math>\rm \Pi_1^1-CA</math>
|<math>\rm W-KPl</math>
|<math>\rm W-KPl</math>
|<math>\rm W-ID_\omega</math>
|<math>\rm W-ID_\omega</math><br><math>\rm ID_{<\omega}^2</math>
<math>\rm ID_{<\omega}^2</math>
|-
|-
|<math>\psi(\Omega_\omega\cdot\Omega)</math>
|<math>\psi(\Omega_\omega\cdot\Omega)</math>
第247行: 第239行:
|<math>\psi(\psi_\omega(0))</math>
|<math>\psi(\psi_\omega(0))</math>
|<math>\rm \Pi_1^1-CA+BI</math>
|<math>\rm \Pi_1^1-CA+BI</math>
|
|<math>\rm KPl</math>
|
|<math>\rm ID_\omega</math><br><math>\rm BID_\omega^2</math>
|-
|-
|<math>\psi(\Omega_{\omega^\omega})</math>
|<math>\psi(\Omega_{\omega^\omega})</math>
|<math>\rm \Delta_2^1-CR</math>
|<math>\rm \Delta_2^1-CR</math><br><math>\rm (\Pi_1^1-CA_{<\omega^\omega})</math>
<math>\rm (\Pi_1^1-CA_{<\omega^\omega})</math>
|<math>{\rm KPl}_{\omega^\omega}^r</math>
|
|<math>\rm ID_{<\omega^\omega}</math>
|
|-
|-
|<math>\psi(\Omega_{\varepsilon_0})</math>
|<math>\psi(\Omega_{\varepsilon_0})</math>
|<math>\rm \Delta_2^1-CA</math>
|<math>\rm \Delta_2^1-CA</math><br><math>\rm \Sigma_2^1-AC</math><br><math>\rm (\Pi_1^1-CA_{<\varepsilon_0})</math>
<math>\rm \Sigma_2^1-AC</math>
|<math>{\rm KPl}_{\varepsilon_0}^r</math><br><math>\rm W-KPi</math><br><math>{\rm W-KP}\beta</math>
<math>\rm (\Pi_1^1-CA_{<\varepsilon_0})</math>
|<math>\rm ID_{<\varepsilon_0}</math><br><math>\rm ID_{<\varepsilon_0}^2</math><br><math>\rm BID_{<\varepsilon_0}^2</math>
|
|
|-
|-
|<math>\psi(\Omega_{\nu\cdot\omega})</math>
|<math>\psi(\Omega_{\nu\cdot\omega})</math>
|<math>\rm (\Pi_1^1-CA_\nu^+)_0</math>
|<math>\rm (\Pi_1^1-CA_\nu^+)_0</math>
|
|<math>{\rm KPl}_{\nu+}^r</math>
|
|<math>\rm ID_{<\nu\cdot\omega}</math><br><math>\rm (PID_\nu^2)_0</math>
|-
|-
|<math>\psi(\Omega_\gamma\cdot\omega)</math>
|<math>\psi(\Omega_\gamma\cdot\omega)</math>
|<math>\rm (\Pi_1^1-CA_{\gamma-})_0</math>
|<math>\rm (\Pi_1^1-CA_{\gamma-})_0</math>
|
|<math>{\rm KPl}_\gamma^r</math>
|
|<math>\rm (NUID_\gamma^2)_0</math>
|-
|-
|<math>\psi(\Omega_{\nu\cdot\omega}\cdot\varepsilon_0))</math>
|<math>\psi(\Omega_{\nu\cdot\omega}\cdot\varepsilon_0))</math>
|<math>\rm \Pi_1^1-CA_\nu^+</math>
|<math>\rm \Pi_1^1-CA_\nu^+</math>
|
|<math>\rm W-KPl_{\nu+}</math>
|
|<math>\rm W-ID_{\nu\cdot\omega}</math><br><math>\rm PID_\nu^2</math>
|-
|-
|<math>\psi(\Omega_\gamma\cdot\varepsilon_0)</math>
|<math>\psi(\Omega_\gamma\cdot\varepsilon_0)</math>
|<math>\rm (\Pi_1^1-CA_\gamma)</math>
|<math>\rm (\Pi_1^1-CA_\gamma)</math><br><math>\rm \Pi_1^1-CA_{\gamma-}</math>
<math>\rm \Pi_1^1-CA_{\gamma-}</math>
|<math>\rm W-KPl_\gamma</math>
|
|<math>\rm W-ID_\gamma</math><br><math>\rm ID_\gamma^2</math><br><math>\rm NUID_\gamma^2</math>
|
|-
|-
|<math>\psi(\Omega_{\nu\cdot\omega}\cdot\Omega))</math>
|<math>\psi(\Omega_{\nu\cdot\omega}\cdot\Omega))</math>
|<math>\rm \Pi_1^1-CA_\nu^++BR</math>
|<math>\rm \Pi_1^1-CA_\nu^++BR</math>
|
|
|
|<math>\rm PID_\nu^2+BR</math>
|-
|-
|<math>\psi(\Omega_\gamma\cdot\Omega)</math>
|<math>\psi(\Omega_\gamma\cdot\Omega)</math>
|<math>\rm \Pi_1^1-CA_{\gamma-}+BR</math>
|<math>\rm \Pi_1^1-CA_{\gamma-}+BR</math>
|
|
|
|<math>\rm NUID_\gamma^2+BR</math>
|-
|-
|<math>\psi(\Omega_{\omega^\gamma})</math>
|<math>\psi(\Omega_{\omega^\gamma})</math>
|<math>\rm (\Pi_1^1-CA_{\omega\gamma})_0</math><br><math>\rm (\Pi_1^1-CA_{<\omega\gamma})</math><br><math>\rm (\Pi_1^1-CA_{<\omega\gamma})+BI</math>
|
|
|
|<math>\rm (ID_{\omega^\gamma}^2)_0</math><br><math>\rm ID_{<\omega^\gamma}</math><br><math>\rm BID_{<\omega^\gamma}^2</math><br><math>\rm (ID_{<\nu}^2)+BI</math>
|
|-
|-
|<math>\psi(\psi_\nu(0))</math>
|<math>\psi(\psi_\nu(0))</math>
|
|<math>\rm (\Pi_1^1-CA_\nu)_0</math>
|
|<math>\rm KPl_\nu</math>
|
|<math>\rm ID_\nu</math><br><math>\rm (ID_\nu^2)_0</math>
|-
|-
|<math>\psi(\psi_\nu(\varepsilon_0))</math>
|<math>\psi(\psi_\nu(\varepsilon_0))</math>
|<math>\rm \Pi_1^1-CA_\nu</math>
|
|
|
|<math>\rm ID_\nu^2</math>
|
|-
|-
|<math>\psi(\psi_\nu(\Omega))</math>
|<math>\psi(\psi_\nu(\Omega))</math>
|<math>\rm \Pi_1^1-CA_\nu+BR</math>
|
|
|
|<math>\rm ID_\nu^2+BR</math>
|
|-
|-
|<math>\psi(\psi_\nu(\psi_\nu(0)))</math>
|<math>\psi(\psi_\nu(\psi_\nu(0)))</math>
|
|
|
|
|
|<math>\rm BID_\nu^2</math>
|-
|-
|<math>\psi(\psi_{\nu+1}(0))</math>
|<math>\psi(\psi_{\nu+1}(0))</math>
|
|<math>\rm \Pi_1^1-CA_\nu+BI</math>
|
|<math>\rm KPl_{\nu+1}</math>
|
|<math>\rm ID_{\nu+1}</math><br><math>\rm ID_\nu^2+BI</math>
|-
|-
|<math>\psi(\psi_{\nu\cdot\omega}(0))</math>
|<math>\psi(\psi_{\nu\cdot\omega}(0))</math>
|
|<math>\rm \Pi_1^1-CA_\nu^++BI</math>
|
|<math>\rm KPl_{\nu+}</math>
|
|<math>\rm ID_{\nu\cdot\omega}</math><br><math>\rm PID_\nu^2+BI</math><br><math>\rm PBID_\nu^2</math>
|-
|-
|<math>\psi(\psi_\gamma(0))</math>
|<math>\psi(\psi_\gamma(0))</math>
|
|<math>\rm (\Pi_1^1-CA_\gamma)_0</math><br><math>\rm (\Pi_1^1-CA_\gamma)+BI</math><br><math>\rm \Pi_1^1-CA_{\gamma-}+BI</math>
|
|<math>\rm KPl_\gamma</math>
|
|<math>\rm ID_\gamma</math><br><math>\rm (ID_\gamma^2)_0</math><br><math>{\rm ID}_\gamma^i(\mathcal{O}){\rm BID}_\nu^2</math><br><math>\rm ID_\gamma^2+BI</math><br><math>\rm NUID_\gamma^2+BI</math>
|-
|-
|<math>\psi(\psi_\Omega(0))</math>
|<math>\psi(\psi_\Omega(0))</math>
|
|
|
|<math>\rm KPl^*</math><br><math>{\rm KPl}_\Omega^r</math>
|
|<math>\rm ID_{\prec*}</math><br><math>\rm BID^{2*}</math><br><math>\rm ID^{2*}+BI^2</math>
|-
|-
|<math>\psi_{\Omega_1}(\psi_I(0))</math>
|<math>\psi_{\Omega_1}(\psi_I(0))</math>
|
|<math>\rm \Pi_1^1-TR_0</math><br><math>\rm \Pi_1^1-TR_0+\Delta_2^1-CA_0</math><br><math>\rm \Delta_2^1-CA+BI(impl\ \Sigma_2^1)</math><br><math>\rm \Delta_2^1-CA+BR(impl\ \Sigma_2^1)</math><br><math>\rm RCA_0+\Delta_2^0-det.</math><br><math>\rm RCA_0+\Delta_1^1-RT</math>
|
|<math>{\rm Aut-KPl}^r</math><br><math>{\rm Aut-KPl}^r+{\rm KPi}^r</math><br><math>\rm KPi^\omega+FOUNDR(impl-\Sigma)</math><br><math>\rm KPi^\omega+FOUND(impl-\Sigma)</math>
|
|<math>{\rm Aut-ID}_0^{pos}</math><br><math>{\rm Aut-ID}_0^{mon}</math>
|-
|-
|<math>\psi_{\Omega_1}(\psi_I(0)\cdot\varepsilon_0)</math>
|<math>\psi_{\Omega_1}(\psi_I(0)\cdot\varepsilon_0)</math>
|
|<math>\rm \Pi_1^1-TR</math>
|
|<math>\rm W-Aut-KPl</math>
|
|<math>{\rm Aut-ID}^{pos}</math><br><math>{\rm Aut-ID}^{mon}</math><br><math>\rm Aut-KPl^\omega</math>
|-
|-
|<math>\psi_{\Omega_1}(\psi_{\Omega_{\psi_I(0)+1}}(0))</math>
|<math>\psi_{\Omega_1}(\psi_{\Omega_{\psi_I(0)+1}}(0))</math>
|
|<math>\rm \Pi_1^1-TR+BI</math>
|
|<math>\rm Aut-KPl</math>
|
|<math>{\rm Aut-ID}_2^{pos}</math><br><math>{\rm Aut-ID}_2^{mon}</math><br><math>\rm Aut-BID</math>
|-
|-
|<math>\psi_{\Omega_1}(\psi_I(I^\omega))</math>
|<math>\psi_{\Omega_1}(\psi_I(I^\omega))</math>
|<math>\rm \Delta_2^1-TR_0</math><br><math>\rm \Sigma_2^1-TRDC_0</math><br><math>\rm \Delta_2^1-CA_0+\Sigma_2^1-BI</math>
|
|
|
|<math>{\rm KPi}^r+(\Sigma-{\rm FOUND})</math><br><math>{\rm KPi}^r+(\Sigma-{\rm REC})</math>
|
|-
|-
|<math>\psi_{\Omega_1}(\psi_I(I^{\varepsilon_0}))</math>
|<math>\psi_{\Omega_1}(\psi_I(I^{\varepsilon_0}))</math>
|<math>\rm \Delta_2^1-TR</math><br><math>\rm \Sigma_2^1-TRDC</math><br><math>\rm \Delta_2^1-CA+\Sigma_2^1-BI</math>
|
|
|
|<math>\rm KPi^\omega+(\Sigma-FOUND)</math><br><math>\rm KPi^\omega+(\Sigma-REC)</math>
|
|-
|-
|<math>\psi_{\Omega_1}(\varepsilon_{I+1})</math>
|<math>\psi_{\Omega_1}(\varepsilon_{I+1})</math>
|
|<math>\rm \Delta_2^1-CA+BI</math><br><math>\rm \Sigma_2^1-AC+BI</math>
|
|<math>\rm KPi</math><br><math>{\rm KP}\beta</math><br><math>\rm CZF+REA</math>
|
|<math>\rm T_0</math>
|-
|-
|<math>\psi_{\Omega_1}(\Omega_{I+\omega})</math>
|<math>\psi_{\Omega_1}(\Omega_{I+\omega})</math>
|
|
|
|<math>\rm KPi^+</math>
|
|<math>\rm ML_1\ W</math><br><math>\rm KP_1\ W</math><br><math>\rm IARI</math>
|-
|-
|<math>\psi_{\Omega_1}(\varepsilon_{M+1})</math>
|<math>\psi_{\Omega_1}(\varepsilon_{M+1})</math>
|
|<math>\rm \Delta_2^1-CA+BI+(M)</math>
|
|<math>\rm KPM</math><br><math>\rm CZFM</math>
|
|
|-
|-
|<math>\psi_{\Omega_1}(\Omega_{M+\omega})</math>
|<math>\psi_{\Omega_1}(\Omega_{M+\omega})</math>
|
|
|
|<math>\rm KPM^+</math>
|
|<math>\rm MLM</math><br><math>\rm Agda</math>
|-
|-
|
|<math>\Psi_{\Omega_1}^0(\varepsilon_{K+1})</math>
|
|<math>{\rm ACA+BI}+\Pi_4^1-\beta\text{-model-Reflection}</math>
|
|<math>{\rm KP}+\Pi_3^{\rm set}\text{-Reflection}</math>
|
|
|-
|-
|
|<math>\Psi_\mathbb{X}^{\varepsilon_{\xi_n+1}}</math>
|
|<math>{\rm ACA+BI}+\Pi_{n+5}^1-\beta\text{-model-Reflection}</math>
|
|<math>{\rm KP}+\Pi_{n+4}^{\rm set}\text{-Reflection}</math>
|
|
|-
|-
|
|<math>\Psi_\mathbb{X}^{\varepsilon_{\Xi+1}}</math>
|
|<math>{\rm ACA+BI}-\beta\text{-model-Reflection}</math>
|
|<math>{\rm KP}+\Pi_\omega^{\rm set}\text{-Reflection}</math>
|
|
|-
|-
|<math>\Psi_\mathbb{H}^{\varepsilon_{\Upsilon+1}}</math>
|
|
|
|<math>{\rm KPi}+\forall\alpha\exists\kappa(L_\kappa\prec_1L_{\kappa+\alpha})</math>
|
|
|
|-
|-
|
|<math>\psi(\Omega_{\mathbb{S}+\omega})</math>
|
|<math>\rm \Pi_1^1-CA_0+\Pi_2^1-CA^-</math>
|
|<math>{\rm KPl}^r+\exists M(\text{Trans}(M)\land M\prec_1 V)</math>
|
|-
|
|
|
|
|
|-
|-
|
|<math>\Psi_\mathbb{K}^{\varepsilon_{I+1}}</math>
|
|<math>\rm \Delta_2^1-CA+BI+\Pi_2^1-CA^-</math>
|
|<math>{\rm KPi}+\exists M(\text{Trans}(M)\land M\prec_1 V)</math>
|
|-
|
|
|
|
|
|-
|-
|
|<math>\mathcal{I}_\omega\cap\omega_1^{\rm CK}</math>
|
|<math>\rm \Pi_2^1-CA_0</math><br><math>\rm \Delta_3^1-CA_0</math>
|
|
|
|
|-
|-
|
|<math>\mathcal{I}_{\omega+1}\cap\omega_1^{\rm CK}</math>
|
|<math>\rm \Pi_2^1-CA+BI</math>
|
|<math>\rm KP+\Sigma_1^{set}-Separation</math><br><math>{\rm KPi}+\forall\alpha\exists\beta(\beta>\alpha)(\beta\text{ stable})</math>
|
|
|-
|-
|
|<math>\mathcal{I}_{\varepsilon_0}\cap\omega_1^{\rm CK}</math>
|
|<math>\rm \Delta_3^1-CA</math><br><math>\rm \Sigma_3^1-AC</math>
|
|
|
|
|-
|-
|
|<math>\text{maybe }\psi_\Omega(\varepsilon_{\mathbb{I}+1})</math>
|
|<math>\rm \Delta_3^1-CA+BI</math><br><math>\rm \Sigma_3^1-AC+BI</math><br><math>\rm \Sigma_3^1-DC+BI</math>
|
|<math>{\rm KP}+\Delta_2^{\rm set}\text{-Separation}</math>
|
|
|-
|-
|<math>\psi_\Omega(\varepsilon_{\mathbb{I}+1})</math>
|
|
|
|<math>{\rm KP}+\Pi_1^{\rm set}\text{-Collection}</math>
|
|
|
|-
|-
|
|
|
|<math>\Pi_{n+3}^1{\rm-CA+BI}</math>
|
|<math>{\rm KP}+\Sigma_{n+2}^{\rm set}\text{-Separation}</math>
|
|
|-
|-
|
|
|
|<math>\Pi_{n+3}^1{\rm-CA}+\Sigma_{n+3}^1{\rm-AC+BI}</math>
|
|<math>{\rm KP^-}+\Sigma_{n+2}^{\rm set}\text{-Separation}+\Sigma_{n+2}^{\rm set}\text{-Collection}</math>
|
|
|-
|-
|
|
|
|<math>\rm Z_2=\Pi_\infty^1-CA</math><br><math>\rm \Delta_1^2-CA_0</math><br><math>\rm Z_2+\Sigma_\infty^1-AC</math>
|
|<math>{\rm KP}+\Sigma_\omega^{\rm set}\text{-Separation}</math><br><math>{\rm KP^-}+\Sigma_\omega^{\rm set}\text{-Separation}+\Sigma_\omega^{\rm set}\text{-Collection}</math><br><math>\rm ZFC^-=ZFC-Powerset</math>
|
|
|-
|-
|
|
|
|<math>{\rm Z}_{n+3}=\Pi_\infty^{n+2}{\rm-CA}</math><br><math>\Delta_1^{n+3}{\rm-CA_0}</math>
|
|<math>{\rm ZFC^-+V=L+}\exists\omega_{n+1}</math>
|
|
|-
|-
|
|
|
|<math>\rm Z_\infty=\Pi_0^\infty-CA</math>
|
|<math>\rm Z</math><br><math>\rm ZC</math><br><math>\rm IZ</math>
|
|
|-
|-
|
|
|
|
|<math>\rm IZF=CZF+Powerset+\Pi_\omega^{set}-Reflection</math><br><math>\rm ZF=CZF+LEM=IZF+LEM</math><br><math>\rm ZFC</math><br><math>\rm ZFC+V=L</math><br><math>\rm AST</math><br><math>\rm IST</math><br><math>\rm NBG=GBC</math><br><math>\rm GB</math>
|
|
|
|}
 
ZFC 相关证明论序数:
 
* <math>\mathrm{S}_0 = (\mathrm{Ext}) + (\mathrm{Null}) + (\mathrm{Pair}) + (\mathrm{Union}) + (\mathrm{Diff})\ (\text{Rudimentary set theory})</math>
* <math>\mathrm{S}_1 = \mathrm{S}_0 + (\mathrm{Powerset})</math>
* <math>\mathrm{M}_0 = \mathrm{S}_1 + (\Delta_0^{\mathrm{set}} - \mathrm{Separation})</math>
* <math>\mathrm{M}_1 = \mathrm{M}_0 + (\mathrm{Regularity}) + (\mathrm{Transitive\ Containment})</math>
* <math>\mathrm{KP}^- = \mathrm{S}_0 + (\mathrm{Infinity}) + (\Delta_0^{\mathrm{set}} - \mathrm{Separation}) + (\Delta_0^{\mathrm{set}} - \mathrm{Collection})</math>
* <math>\mathrm{KP}^{-\infty} = \mathrm{S}_0 + (\mathrm{Foundation}) + (\Delta_0^{\mathrm{set}} - \mathrm{Separation}) + (\Delta_0^{\mathrm{set}} - \mathrm{Collection})</math>
* <math>\mathrm{KP} = \mathrm{KP}^{-\infty} + (\mathrm{Infinity}) = \mathrm{KP}^- + (\mathrm{Foundation})</math>
* <math>\mathrm{KPl} = \mathrm{KP} + (\text{universe limit of admissible sets})</math>
* <math>\mathrm{KPi} = \mathrm{KP} + (\text{recursively inaccessible universe})</math>
* <math>\mathrm{KPh} = \mathrm{KP} + (\text{recursively hyperinaccessible universe})</math>
* <math>\mathrm{KPM} = \mathrm{KP} + (\text{recursively Mahlo universe})</math>
* <math>\mathrm{ZBQC} = \mathrm{M}_0 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\mathrm{Choice})</math><br><math>\mathrm{NFU} + (\mathrm{Infinity}) + (\mathrm{Choice})</math>
* <math>\mathrm{MAC} = \mathrm{M}_1 + (\mathrm{Infinity}) + (\mathrm{Choice}) = \mathrm{ZBQC} + (\text{Transitive Containment})</math>
* <math>\mathrm{MOST} = \mathrm{MAC} + (\Delta_0^{\mathrm{set}} - \mathrm{Collection}) = \mathrm{ZBQC} + \mathrm{KP} + (\Sigma_1^{\mathrm{set}} - \mathrm{Separation})</math>
* <math>\mathrm{Z} = \mathrm{S}_1 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\Sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math>
* <math>\mathrm{ZC} = \mathrm{Z} + (\mathrm{Choice}) = \mathrm{ZBQC} + (\sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math>
* <math>\mathrm{MAC} + \forall m (\beth_{\beth_{m}}\text{ exists})</math><br><math>\mathrm{NFU} + (\mathrm{Infinity}) + (\mathrm{Choice})</math>
* <math>\mathrm{Z} + (\Pi_2^{\mathrm{set}} - \mathrm{Replacement})</math><br><math>\mathrm{NFU}^* = \mathrm{NFU} + (\mathrm{Counting}) + (\mathrm{Strongly\ Cantorian\ Separation})</math>
* <math>\mathrm{Z} + (\Pi_m^{\mathrm{set}} - \mathrm{Replacement})</math>
* <math>\mathrm{ZF} = \mathrm{Z} + (\Pi_\omega^{\mathrm{set}} - \mathrm{Replacement})</math><br><math>\mathrm{AST}</math><br><math>\mathrm{GB}</math>
* <math>\mathrm{ZFC} = \mathrm{ZF} + (\text{Choice})</math><br><math>\mathrm{NBG} = \mathrm{GBC} = \mathrm{GB} + (\text{Global Choice})</math>
* <math>\mathrm{ZFC} + (\text{there is a worldly cardinal})</math>
* <math>\mathrm{NBG} + (\text{there is a stationary proper class of worldly cardinals})</math>
* <math>\mathrm{NBG} + (\text{Class Forcing Theorem})</math><br><math>\mathrm{NBG} + (\text{Clopen Class Game Determinacy})</math>
* <math>\mathrm{MK} = \mathrm{NBG} + (\Pi_{\infty}^{\mathrm{class}} - \mathrm{CA})</math>
* <math>\mathrm{ZFC} + (\text{there is an inaccessible cardinal})</math><br><math>\mathrm{ZFC} + (\Pi_{1}^{1}\ \text{Perfect Set Property})</math><br><math>\mathrm{ZFC} + (\Sigma_{3}^{1}\ \text{Lebesgue measurability})</math>
* <math>\mathrm{ZFC} + (\text{there are } \omega\ \text{inaccessible cardinals})</math><br><math>\mathrm{ZFC} + (\forall\alpha(\omega \leq \alpha \leq \aleph_{\omega} \Rightarrow |\mathrm{V}_{\alpha} \cap L| = |\alpha|))</math>
* <math>\mathrm{ZFC} + (\text{there is a proper class of inaccessible cardinals})</math><br><math>\mathrm{ZFC} + (\text{Grothendieck Universe Axiom})</math>
* <math>\mathrm{ZFC} + (\text{there is a } \Sigma_{n}^{\mathrm{set}}\text{-reflecting cardinal})</math>
* <math>\mathrm{ZFC} + (\text{there is a } \sigma_{\omega}^{\mathrm{set}}\text{-reflecting cardinal})</math><br><math>\mathrm{ZFC} + (\text{Ord is Mahlo})</math>
* <math>\mathrm{ZFC} + (\text{there is an uplifting cardinal})</math><br><math>\mathrm{ZFC} + (\text{Resurrection Axioms})</math>
* <math>\mathrm{ZFC} + (\text{there is a Mahlo cardinal})</math>
* <math>\mathrm{SMAH} = \mathrm{ZFC} + (\text{there is a } n\text{-Mahlo cardinal})_{n\in\mathbb{N}}</math><br><math>\mathrm{NFUA} = \mathrm{NFU} + (\text{Infinity}) + (\text{Cantorian Sets})</math>
* <math>\mathrm{SMAH}^{+} = \mathrm{ZFC} + \forall n(\text{there is a } n\text{-Mahlo cardinal})</math>
* <math>\mathrm{MK} + (\text{Ord is weakly compact})</math><br><math>\mathrm{GPK}_{\infty}^{+} = \mathrm{GPK}^{+} + (\text{Infinity})</math><br><math>\mathrm{NFUB} =\mathrm{NFU} +(\text{Infinity}) + (\text{Cantorian Sets}) + (\text{Small Ordinals})</math>
* <math>\mathrm{ZFC} + (\text{there is a weakly compact cardinal})</math><br><math>\mathrm{ZFC} + (\omega_{2}\ \text{has the tree property})</math>
* <math>\mathrm{ZFC} + (\text{there is a totally indescribable cardinal})</math>
* <math>\mathrm{ZFC} + (\text{there is a subtle cardinal})</math>
* <math>\mathrm{ZFC} + (\text{there is an ineffable cardinal})</math>
* <math>\mathrm{ZFC} + \forall\alpha(\alpha < \omega_{1} \Rightarrow \text{there is a } \alpha\text{-Erdős cardinal})</math>
* <math>\mathrm{ZFC} + (0^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (L \models \aleph_{\omega}\ \text{is regular})</math><br><math>\mathrm{ZFC} + \forall \alpha (\alpha \geq \omega \Longrightarrow |V_{\alpha} \cap L| = |\alpha|)</math><br><math>\mathrm{ZFC} + (\text{parameter-free } \Sigma_{1}^{1}\text{-determinacy})</math>
* <math>\mathrm{ZFC} + \forall x\ (x \in \mathbb{R} \Longrightarrow x^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (\Sigma_{1}^{1}\text{-determinacy})</math>
* <math>\mathrm{ZFC} + \forall x\ (x^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (\Sigma_{2}^{1}\ \text{universal Baireness})</math>
* <math>\mathrm{ZFC} + (\text{there is an } \omega_{1}\text{-Erdős cardinal})</math><br><math>\mathrm{ZFC} + (\text{Chang's Conjecture})</math>
* <math>\mathrm{SRP} = \mathrm{ZFC} + (\text{there is cardinal with the } n\text{-stationary Ramsey property})_{n \in \mathbb{N}}</math>
* <math>\mathrm{SRP}^{+} = \mathrm{ZFC} + \forall n\ (\text{there is a cardinal with the } n\text{-stationary Ramsey property})</math>
* <math>\mathrm{MK} + (\text{Ord is measurable})</math><br><math>\mathrm{NFUM} = \mathrm{NFU} + (\text{Infinity}) + (\text{Large Ordinals}) + (\text{Small Ordinals})</math>
* <math>\mathrm{ZFM} = \mathrm{ZFC} + (\text{there is a measurable cardinal})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{1}}\ \text{is precipitous})</math><br><math>\mathrm{ZF} + (\omega_{1}\ \text{is measurable})</math>
* <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = 2)</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{2}}\ \text{is precipitous})</math>
* <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = \kappa^{++})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{ZFC} + (2^{\aleph_{\omega}} = \aleph_{\omega + 2})</math>
* <math>\mathrm{ZFC} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{2} + (\Delta_{2}^{1}\text{-determinacy})\ (\text{conjectural})</math>
* <math>\mathrm{MK} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{3}+ (\text{lightface } \Delta_{2}^{1}\text{-determinacy})</math>
* <math>\mathrm{NBG} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{3}+ (\Delta_{2}^{1}\text{-determinacy})</math>
* <math>\mathrm{ZFC} + (\text{there is a Woodin cardinal})</math><br><math>\mathrm{ZFC} + (\Delta_{2}^{1}\text{-determinacy})</math><br><math>\mathrm{ZFC} + (\mathrm{OD} \models \mathrm{AD})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{1}}\ \text{is } \omega_{2}\text{-saturated})</math>
* <math>\mathrm{ZFC} + (\text{there are } n\ \text{Woodin cardinals})_{n \in \mathbb{N}}</math><br><math>\mathrm{Z}_{2} + (\mathrm{PD})</math>
* <math>\mathrm{ZFC} + (\text{there are } \omega \text{ Woodin cardinals})</math><br><math>\mathrm{ZF} + (\mathrm{AD})</math><br><math>\mathrm{ZFC} + (L(\mathbb{R}) \models \mathrm{AD})</math><br><math>\mathrm{ZFC} + (\mathrm{OD}(\mathbb{R}) \models \mathrm{AD})</math>
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\omega_1)\text{-strongly compact})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_1} \text{ is } \omega_1\text{-dense})</math>
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\mathbb{R})\text{-strongly compact})</math><br><math>\mathrm{ZF} + \mathrm{DC} + (\mathrm{AD}_{\mathbb{R}})</math>
* <math>\mathrm{ZFC} + \text{(there is a superstrong cardinal)}</math>
* <math>\mathrm{ZFC} + \text{(there is a subcompact cardinal)}</math><br><math>\mathrm{ZFC} + (V = L[\vec{E}]) + \exists\kappa(\neg\square_{\kappa})</math>
* <math>\mathrm{ZFC} + \text{(there is a strongly compact cardinal)}</math><br><math>\mathrm{ZFC} + \text{(Proper Forcing Axiom)}</math>
* <math>\mathrm{ZFC} + \text{(there is a supercompact cardinal)}</math><br><math>\mathrm{ZFC} + \text{(Martin's Maximum)}</math>
* <math>\mathrm{ZFC} + \forall n \text{(there is a proper class of } C^{(n)}\text{-extendible cardinals)}</math><br><math>\mathrm{ZFC} + \text{(Vopěnka's Principle)}</math>
* <math>\mathrm{ZFC} + \text{(there is a high-jump cardinal)}</math>
* <math>\mathrm{HUGE} = \mathrm{ZFC} + \text{( there is a } n\text{-huge cardinal )}_{n\in\mathbb{N}}</math>
* <math>\mathrm{ZFC} + \text{(Wholeness Axiom } \mathrm{WA}_n)</math>
* <math>\mathrm{ZFC} + \mathrm{I}3 = \mathrm{ZFC} + \exists\lambda(E_0(\lambda))</math>
* <math>\mathrm{ZFC} + \mathrm{I}2 = \mathrm{ZFC} + \exists\lambda(E_1(\lambda))</math>
* <math>\mathrm{ZFC} + \mathrm{I}1 = \mathrm{ZFC} + \exists\lambda(E_{\omega}(\lambda))</math>
* <math>\mathrm{ZFC} + \mathrm{I}0</math>
* <math>\mathrm{ZF} + \mathrm{DC} + \exists\lambda\exists j : V_{\lambda + 2} \prec_{\Sigma_{\omega}^{\mathrm{set}}} V_{\lambda + 2}</math>
* <math>\mathrm{ZF}_j + \mathrm{DC} + \text{(there is a Reinhardt cardinal )}</math>
* <math>\mathrm{ZF} + \mathrm{DC} + \text{(there is a Berkeley cardinal)}</math>


|}
[[分类:集合论相关]]

2025年7月27日 (日) 13:21的最新版本

证明论序数(或称证明论强度序数,Proof-Theoretic Ordinal)是衡量形式理论强度的核心工具,通过将理论映射到序数上,刻画其能证明的良序关系的复杂度。该概念源于希尔伯特的证明论计划,旨在通过有限方法证明数学基础理论的一致性,后由阿克曼(Wilhelm Ackermann)和根岑(Gerhard Gentzen)发展为序数分析技术。

定义和性质

对形式理论 T,其证明论序数 |T|ord​(|T|PTO(T))定义为能用超限归纳证明的原始递归良序的序型最大值。

证明论序数满足:

  1. 对任意递归序数 β<|T|,理论 T 能证明“所有序数小于 β 的原始递归良序关系都是良序的”;对 α=|T|,理论 T 无法证明“所有序数小于 α 的原始递归良序关系都是良序的”。
  2. 存在一种递归记号系统,自然表示所有小于 |T| 的序数;理论 T 能通过超限归纳(序数是良序集的序型,满足超限归纳原理:α(β<α(P(β)P(α))αP(α)),其中 P 是任意性质)到 |T|,证明自身的一致性(即 T);理论 T 能证明所有初等递归函数在小于 |T| 的序数上总停止;对任意递归序数 β<|T|,至少不满足上述条件中的一条。
  3. 证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序。

证明论序数表

证明论序数 算术论体系 集合论体系 其他体系
Q KP
ω2 RFA
IΔ0
ω3 RCA0*
WKL0*
IΔ0+exp
ωn IΔ0+n is total
ωω RCA0
WKL0
PRA
RCA02
CPRC
KP+Π1set Fondation+IND
ωωωω RCA0+(Π20)IND
ω(n+2) IΣn+1
ε0 PA
ACA0
Δ11CA0
Σ11AC0
KP EM0
ε1 ACA0+KPHT
εω ACA0+iRT
RCA0+YnX(TJ(n,X,Y))
εε0 ACA
FPnACA'0
FPnACA
ζ0 ACA0+XY(TJ(ω,X,Y))
ACA0+(BR)
p1(ACA0)
φ(2,ε0) ACA+XY(TJ(ω,X,Y))
RFN
φ(ω,0) Δ11CR
RCA0*+Π11CA
Σ11DC0
ID1#
EM0+JR
PID
AccID(Acc)
(Π00(P),PN)ID
(Π00(P),PN)ID(Acc)
φ(ν+1,0) ACA0+XY(TJ(ων,X,Y))
ψ(Ωε0) Δ11CA
Σ11AC
(Π10CA)<ε0
ψ(Ωψ(Ωω)) PRS ω
Γ0 ATR0
Δ11CA+BR
RCA0+Σ10RT
RCA0+Δ10RT
RCA0+Σ10det.
RCA0+Δ10det.
FP0
KPi
CZF+INAC
ID^<ω
ID^*
ML<ω
MLU
U(PA)
φ(1,0,ωω) KPl0+(Σ1Iω)
φ(1,0,ε0) ATR ID^ω
ψ(ΩΩ+1) RCA0+XM(XMMωATR0)
ψ(ΩΩ+ω) ATR0+Σ11DC ID^<ωω
ψ(ΩΩ+ε0) ATR+Σ11DC ID^<ε0
ψ(ΩΩ+Γ0) ID^<Γ0
MLS
φ(2,0,0) FTR0 KPh Aut(ID^)
φ(2,0,ε0) FTR
φ(2,ε0,0) KPh0+(FIω)
ψ(ΩΩω) KPM
φ(ε0,0,0) Σ11TDC
φ(1,0,0,0) p1(Σ11TDC0)
ψ(ΩΩω) RCA0*+Π11CA
p3(ACA0)
FIT
TID
ϑ(ΩΩ) p1(p3(ACA0))
θ(n+2)(Ωω)0 ACA0+Πn+21BI
Πn+11RFN
(Πn+21BI)0
(Πn+21BI)0
KPω+Πn+2setFoundation
θ(n+2)(Ωω)0 ACA+Πn+21BI
(Πn+21BI)
KPω+IND+Πn+2setFoundation
ψ(ψ1(0)) ACA+BI
ACA0+Π11CA
Π10FXP0
KP
KP+Π2setReflection
KP+(BI*)
KP+(ATR0*)
CZF
KPω2+Δ1CA+sΠ11ref
ID1
ID12
ML1 V
ψ(Ω2) RCA0+XM(XMMωACA+BI)
ψ(Ω2Ω2) ATR0
FP0
Σ11DC0+(SUB)
Σ11AC0+(SUB)
ID^<ω𝒰(ID1)
ψ(ψ2(0)) KP+ω1CK ID2
ID22
ψ(Ωω) Π11CA0
Δ21CA0
RCA0+Σ10Π10det.
RCA0+Δ20RT
KPlr
KPir
KPβr
ID<ω
(ID<ω2)0
ψ(Ωωωω) Π11CA0+Π21IND
ψ(Ωωε0) Π11CA WKPl WIDω
ID<ω2
ψ(ΩωΩ) Π11CA+BR
ψ(Ωωω) Π11CA0+Π21BI
ψ(Ωωωω) Π11CA0+Π21BI+Π31IND
ψ(ψω(0)) Π11CA+BI KPl IDω
BIDω2
ψ(Ωωω) Δ21CR
(Π11CA<ωω)
KPlωωr ID<ωω
ψ(Ωε0) Δ21CA
Σ21AC
(Π11CA<ε0)
KPlε0r
WKPi
WKPβ
ID<ε0
ID<ε02
BID<ε02
ψ(Ωνω) (Π11CAν+)0 KPlν+r ID<νω
(PIDν2)0
ψ(Ωγω) (Π11CAγ)0 KPlγr (NUIDγ2)0
ψ(Ωνωε0)) Π11CAν+ WKPlν+ WIDνω
PIDν2
ψ(Ωγε0) (Π11CAγ)
Π11CAγ
WKPlγ WIDγ
IDγ2
NUIDγ2
ψ(ΩνωΩ)) Π11CAν++BR PIDν2+BR
ψ(ΩγΩ) Π11CAγ+BR NUIDγ2+BR
ψ(Ωωγ) (Π11CAωγ)0
(Π11CA<ωγ)
(Π11CA<ωγ)+BI
(IDωγ2)0
ID<ωγ
BID<ωγ2
(ID<ν2)+BI
ψ(ψν(0)) (Π11CAν)0 KPlν IDν
(IDν2)0
ψ(ψν(ε0)) Π11CAν IDν2
ψ(ψν(Ω)) Π11CAν+BR IDν2+BR
ψ(ψν(ψν(0))) BIDν2
ψ(ψν+1(0)) Π11CAν+BI KPlν+1 IDν+1
IDν2+BI
ψ(ψνω(0)) Π11CAν++BI KPlν+ IDνω
PIDν2+BI
PBIDν2
ψ(ψγ(0)) (Π11CAγ)0
(Π11CAγ)+BI
Π11CAγ+BI
KPlγ IDγ
(IDγ2)0
IDγi(𝒪)BIDν2
IDγ2+BI
NUIDγ2+BI
ψ(ψΩ(0)) KPl*
KPlΩr
ID*
BID2*
ID2*+BI2
ψΩ1(ψI(0)) Π11TR0
Π11TR0+Δ21CA0
Δ21CA+BI(impl Σ21)
Δ21CA+BR(impl Σ21)
RCA0+Δ20det.
RCA0+Δ11RT
AutKPlr
AutKPlr+KPir
KPiω+FOUNDR(implΣ)
KPiω+FOUND(implΣ)
AutID0pos
AutID0mon
ψΩ1(ψI(0)ε0) Π11TR WAutKPl AutIDpos
AutIDmon
AutKPlω
ψΩ1(ψΩψI(0)+1(0)) Π11TR+BI AutKPl AutID2pos
AutID2mon
AutBID
ψΩ1(ψI(Iω)) Δ21TR0
Σ21TRDC0
Δ21CA0+Σ21BI
KPir+(ΣFOUND)
KPir+(ΣREC)
ψΩ1(ψI(Iε0)) Δ21TR
Σ21TRDC
Δ21CA+Σ21BI
KPiω+(ΣFOUND)
KPiω+(ΣREC)
ψΩ1(εI+1) Δ21CA+BI
Σ21AC+BI
KPi
KPβ
CZF+REA
T0
ψΩ1(ΩI+ω) KPi+ ML1 W
KP1 W
IARI
ψΩ1(εM+1) Δ21CA+BI+(M) KPM
CZFM
ψΩ1(ΩM+ω) KPM+ MLM
Agda
ΨΩ10(εK+1) ACA+BI+Π41β-model-Reflection KP+Π3set-Reflection
Ψ𝕏εξn+1 ACA+BI+Πn+51β-model-Reflection KP+Πn+4set-Reflection
Ψ𝕏εΞ+1 ACA+BIβ-model-Reflection KP+Πωset-Reflection
ΨεΥ+1 KPi+ακ(Lκ1Lκ+α)
ψ(Ω𝕊+ω) Π11CA0+Π21CA KPlr+M(Trans(M)M1V)
Ψ𝕂εI+1 Δ21CA+BI+Π21CA KPi+M(Trans(M)M1V)
ωω1CK Π21CA0
Δ31CA0
ω+1ω1CK Π21CA+BI KP+Σ1setSeparation
KPi+αβ(β>α)(β stable)
ε0ω1CK Δ31CA
Σ31AC
maybe ψΩ(ε𝕀+1) Δ31CA+BI
Σ31AC+BI
Σ31DC+BI
KP+Δ2set-Separation
ψΩ(ε𝕀+1) KP+Π1set-Collection
Πn+31CA+BI KP+Σn+2set-Separation
Πn+31CA+Σn+31AC+BI KP+Σn+2set-Separation+Σn+2set-Collection
Z2=Π1CA
Δ12CA0
Z2+Σ1AC
KP+Σωset-Separation
KP+Σωset-Separation+Σωset-Collection
ZFC=ZFCPowerset
Zn+3=Πn+2CA
Δ1n+3CA0
ZFC+V=L+ωn+1
Z=Π0CA Z
ZC
IZ
IZF=CZF+Powerset+ΠωsetReflection
ZF=CZF+LEM=IZF+LEM
ZFC
ZFC+V=L
AST
IST
NBG=GBC
GB

ZFC 相关证明论序数:

  • S0=(Ext)+(Null)+(Pair)+(Union)+(Diff) (Rudimentary set theory)
  • S1=S0+(Powerset)
  • M0=S1+(Δ0setSeparation)
  • M1=M0+(Regularity)+(Transitive Containment)
  • KP=S0+(Infinity)+(Δ0setSeparation)+(Δ0setCollection)
  • KP=S0+(Foundation)+(Δ0setSeparation)+(Δ0setCollection)
  • KP=KP+(Infinity)=KP+(Foundation)
  • KPl=KP+(universe limit of admissible sets)
  • KPi=KP+(recursively inaccessible universe)
  • KPh=KP+(recursively hyperinaccessible universe)
  • KPM=KP+(recursively Mahlo universe)
  • ZBQC=M0+(Regularity)+(Infinity)+(Choice)
    NFU+(Infinity)+(Choice)
  • MAC=M1+(Infinity)+(Choice)=ZBQC+(Transitive Containment)
  • MOST=MAC+(Δ0setCollection)=ZBQC+KP+(Σ1setSeparation)
  • Z=S1+(Regularity)+(Infinity)+(ΣωsetSeparation)
  • ZC=Z+(Choice)=ZBQC+(σωsetSeparation)
  • MAC+m(m exists)
    NFU+(Infinity)+(Choice)
  • Z+(Π2setReplacement)
    NFU*=NFU+(Counting)+(Strongly Cantorian Separation)
  • Z+(ΠmsetReplacement)
  • ZF=Z+(ΠωsetReplacement)
    AST
    GB
  • ZFC=ZF+(Choice)
    NBG=GBC=GB+(Global Choice)
  • ZFC+(there is a worldly cardinal)
  • NBG+(there is a stationary proper class of worldly cardinals)
  • NBG+(Class Forcing Theorem)
    NBG+(Clopen Class Game Determinacy)
  • MK=NBG+(ΠclassCA)
  • ZFC+(there is an inaccessible cardinal)
    ZFC+(Π11 Perfect Set Property)
    ZFC+(Σ31 Lebesgue measurability)
  • ZFC+(there are ω inaccessible cardinals)
    ZFC+(α(ωαω|VαL|=|α|))
  • ZFC+(there is a proper class of inaccessible cardinals)
    ZFC+(Grothendieck Universe Axiom)
  • ZFC+(there is a Σnset-reflecting cardinal)
  • ZFC+(there is a σωset-reflecting cardinal)
    ZFC+(Ord is Mahlo)
  • ZFC+(there is an uplifting cardinal)
    ZFC+(Resurrection Axioms)
  • ZFC+(there is a Mahlo cardinal)
  • SMAH=ZFC+(there is a n-Mahlo cardinal)n
    NFUA=NFU+(Infinity)+(Cantorian Sets)
  • SMAH+=ZFC+n(there is a n-Mahlo cardinal)
  • MK+(Ord is weakly compact)
    GPK+=GPK++(Infinity)
    NFUB=NFU+(Infinity)+(Cantorian Sets)+(Small Ordinals)
  • ZFC+(there is a weakly compact cardinal)
    ZFC+(ω2 has the tree property)
  • ZFC+(there is a totally indescribable cardinal)
  • ZFC+(there is a subtle cardinal)
  • ZFC+(there is an ineffable cardinal)
  • ZFC+α(α<ω1there is a α-Erdős cardinal)
  • ZFC+(0 exists)
    ZFC+(Lω is regular)
    ZFC+α(αω|VαL|=|α|)
    ZFC+(parameter-free Σ11-determinacy)
  • ZFC+x (xx exists)
    ZFC+(Σ11-determinacy)
  • ZFC+x (x exists)
    ZFC+(Σ21 universal Baireness)
  • ZFC+(there is an ω1-Erdős cardinal)
    ZFC+(Chang's Conjecture)
  • SRP=ZFC+(there is cardinal with the n-stationary Ramsey property)n
  • SRP+=ZFC+n (there is a cardinal with the n-stationary Ramsey property)
  • MK+(Ord is measurable)
    NFUM=NFU+(Infinity)+(Large Ordinals)+(Small Ordinals)
  • ZFM=ZFC+(there is a measurable cardinal)
    ZFC+(NSω1 is precipitous)
    ZF+(ω1 is measurable)
  • ZFC+(there is a measurable cardinal κ such that o(κ)=2)
    ZFC+(NSω2 is precipitous)
  • ZFC+(there is a measurable cardinal κ such that o(κ)=κ++)
    ZFC+¬SCH
    ZFC+(2ω=ω+2)
  • ZFC+(Ord is Woodin)
    ZFC+¬SCH
    Z2+(Δ21-determinacy) (conjectural)
  • MK+(Ord is Woodin)
    ZFC+¬SCH
    Z3+(lightface Δ21-determinacy)
  • NBG+(Ord is Woodin)
    ZFC+¬SCH
    Z3+(Δ21-determinacy)
  • ZFC+(there is a Woodin cardinal)
    ZFC+(Δ21-determinacy)
    ZFC+(ODAD)
    ZFC+(NSω1 is ω2-saturated)
  • ZFC+(there are n Woodin cardinals)n
    Z2+(PD)
  • ZFC+(there are ω Woodin cardinals)
    ZF+(AD)
    ZFC+(L()AD)
    ZFC+(OD()AD)
  • ZF+DC+(ω1 is 𝒫(ω1)-strongly compact)
    ZFC+(NSω1 is ω1-dense)
  • ZF+DC+(ω1 is 𝒫()-strongly compact)
    ZF+DC+(AD)
  • ZFC+(there is a superstrong cardinal)
  • ZFC+(there is a subcompact cardinal)
    ZFC+(V=L[E])+κ(¬κ)
  • ZFC+(there is a strongly compact cardinal)
    ZFC+(Proper Forcing Axiom)
  • ZFC+(there is a supercompact cardinal)
    ZFC+(Martin's Maximum)
  • ZFC+n(there is a proper class of C(n)-extendible cardinals)
    ZFC+(Vopěnka's Principle)
  • ZFC+(there is a high-jump cardinal)
  • HUGE=ZFC+( there is a n-huge cardinal )n
  • ZFC+(Wholeness Axiom WAn)
  • ZFC+I3=ZFC+λ(E0(λ))
  • ZFC+I2=ZFC+λ(E1(λ))
  • ZFC+I1=ZFC+λ(Eω(λ))
  • ZFC+I0
  • ZF+DC+λj:Vλ+2ΣωsetVλ+2
  • ZFj+DC+(there is a Reinhardt cardinal )
  • ZF+DC+(there is a Berkeley cardinal)