DcN:修订间差异
来自Googology Wiki
更多操作
小无编辑摘要 |
小无编辑摘要 |
||
(未显示4个用户的7个中间版本) | |||
第1行: | 第1行: | ||
DcN,是 318`4 创造的便于打字的记号,主要用于写 FOS 中作为序数的项,几乎不可能良定义,主要通过枚举列表来主观推算定义。DcN 的极限是 <math>\varphi(10,0)</math>,Y_cpper 将其扩展到 <math>\Gamma_0</math>,现在一般在 <math>\varphi(\omega,0)</math> 之后使用这个扩展。DcN 的所有符号都集中在电脑键盘左上方的一小片区域,qwerty13456789,456789 使用频率很低,Veblen 记号需要随时要输入括号下标希腊字母,1-Y 则有比 DcN 更长的常见表达式,所以 DcN 便于打字,是专为 FOS 中常见序数设计的记号;但因为可读性差,DcN 一直没能流传开来。 | |||
因为完全无r的 DcN 存在歧义,比如 wtw1wtww 可以是 <math>\omega^{\omega^2}+\omega^\omega</math>,也可以是 <math>\omega^{\omega^{\omega^2}+\omega}</math>,因此在表达 FOS 的项时,建议使用含 r 的 DcN,但是去掉所有位于表达式末尾的 r,如 <math>\omega^{\omega^{\omega^\omega}}</math>=wtwtwtwrrr 记作 wtwtwtw。 | |||
1-Y 不必多说,是 Yukito 在 2019 年创造的序列记号,首次引入山脉图,在 Y(1,3) 之前有非常优秀的性质,因此也常用于表达 FOS 中作为项的序数。不过为简便,写 1-Y 表达式时通常省略 Y( ) 外壳和逗号,超过 10 的数字用拉丁字母表示,超过 36 则无写法。 | |||
在研究 FOS 的定义、构造原理时,使用 1-Y 的情况更多,因为 1-Y 的山脉结构和 FOS 中项内部的山脉结构类似;而在研究 FOS 的分析、强度形成原理时,为简便起见,使用 DcN 更多。在阅读 FOS 的枚举列表之前,请务必将本文的枚举列表熟透于心中,否则用 Veblen 记号或 OCF 写 FOS 表达式费时费力。 | |||
{| class="wikitable" | {| class="wikitable" | ||
| | |- | ||
!序数(十进制+ | !序数(十进制 + Cantor 记号 + Veblen 记号) | ||
!DcN | !DcN | ||
!1-Y | !1-Y | ||
第12行: | 第14行: | ||
|<math>0</math> | |<math>0</math> | ||
|0 | |0 | ||
| | |<math>\varnothing</math> | ||
|- | |- | ||
|<math>1</math> | |<math>1</math> | ||
第187行: | 第189行: | ||
|- | |- | ||
|<math>\omega^{\omega+1}+\omega^\omega</math> | |<math>\omega^{\omega+1}+\omega^\omega</math> | ||
| | |wtwr1wt1w | ||
|1232123 | |1232123 | ||
|- | |- | ||
|<math>\omega^{\omega+1}+\omega^\omega2</math> | |<math>\omega^{\omega+1}+\omega^\omega2</math> | ||
| | |w1twr1wt1w | ||
|1232123123 | |1232123123 | ||
|- | |- | ||
|<math>\omega^{\omega+1}2+\omega^\omega</math> | |<math>\omega^{\omega+1}2+\omega^\omega</math> | ||
| | |wtwr1w1t1w | ||
|12321232123 | |12321232123 | ||
|- | |- | ||
|<math>\omega^{\omega+1}2+\omega^\omega2</math> | |<math>\omega^{\omega+1}2+\omega^\omega2</math> | ||
| | |w1twr1w1t1w | ||
|12321232123123 | |12321232123123 | ||
|- | |- | ||
第223行: | 第225行: | ||
|- | |- | ||
|<math>\omega^{\omega2+1}+\omega^{\omega2}</math> | |<math>\omega^{\omega2+1}+\omega^{\omega2}</math> | ||
| | |wtw1r1wt1w1 | ||
|12323212323 | |12323212323 | ||
|- | |- | ||
|<math>\omega^{\omega2+1}+\omega^{\omega2}2</math> | |<math>\omega^{\omega2+1}+\omega^{\omega2}2</math> | ||
| | |w1tw1r1wt1w1 | ||
|1232321232312323 | |1232321232312323 | ||
|- | |- | ||
|<math>\omega^{\omega2+1}2+\omega^{\omega2}2</math> | |<math>\omega^{\omega2+1}2+\omega^{\omega2}2</math> | ||
| | |w1tw1r1w1t1w1 | ||
|1232321232321232312323 | |1232321232321232312323 | ||
|- | |- | ||
|<math>\omega^{\omega2+1}2+\omega^{\omega2}2+\omega^{\omega+1}2+\omega^{\omega}2</math> | |<math>\omega^{\omega2+1}2+\omega^{\omega2}2+\omega^{\omega+1}2+\omega^{\omega}2</math> | ||
| | |w1twr1w1t1wr1w1tw1r1w1t1w1 | ||
|123232123232123231232312321232123123 | |123232123232123231232312321232123123 | ||
|- | |- | ||
第243行: | 第245行: | ||
|- | |- | ||
|<math>\omega^{\omega2+2}+\omega^{\omega2+1}</math> | |<math>\omega^{\omega2+2}+\omega^{\omega2+1}</math> | ||
| | |wt1w1r1wt11w1 | ||
|1232322123232 | |1232322123232 | ||
|- | |- | ||
第251行: | 第253行: | ||
|- | |- | ||
|<math>\omega^{\omega3+1}+\omega^{\omega3}</math> | |<math>\omega^{\omega3+1}+\omega^{\omega3}</math> | ||
| | |wtw11r1wt1w11 | ||
|123232321232323 | |123232321232323 | ||
|- | |- | ||
第263行: | 第265行: | ||
|- | |- | ||
|<math>\omega^{\omega^2+\omega+1}+\omega^{\omega^2+\omega}</math> | |<math>\omega^{\omega^2+\omega+1}+\omega^{\omega^2+\omega}</math> | ||
| | |wtw1wwr1wt1w1ww | ||
|1233232123323 | |1233232123323 | ||
|- | |- | ||
第277行: | 第279行: | ||
|wtwtw | |wtwtw | ||
|1234 | |1234 | ||
|- | |- | ||
|<math>\omega^{\omega^{\omega2+1}3}</math> | |<math>\omega^{\omega^{\omega2+1}3}</math> | ||
第317行: | 第299行: | ||
|wtwtwtw | |wtwtwtw | ||
|12345 | |12345 | ||
|- | |- | ||
|<math>\varepsilon_0</math> | |<math>\varepsilon_0</math> | ||
|e | |e | ||
|124 | |124 | ||
|- | |||
|<math>\varepsilon_0+\omega</math> | |||
|w1e | |||
|12412 | |||
|- | |||
|<math>\varepsilon_0+\omega^\omega</math> | |||
|wtwr1e | |||
|124123 | |||
|- | |||
|<math>\varepsilon_02</math> | |||
|e1 | |||
|124124 | |||
|- | |||
|<math>\varepsilon_02+\omega</math> | |||
|w1e1 | |||
|12412412 | |||
|- | |||
|<math>\varepsilon_0\omega=\omega^{\varepsilon_0+1}</math> | |||
|wt1e | |||
|1242 | |||
|- | |||
|<math>\omega^{\varepsilon_0+1}+\varepsilon_0</math> | |||
|e1wt1e | |||
|1242124 | |||
|- | |||
|<math>\omega^{\varepsilon_0+1}2</math> | |||
|w1t1e | |||
|12421242 | |||
|- | |||
|<math>\omega^{\varepsilon_0+2}</math> | |||
|wt11e | |||
|12422 | |||
|- | |||
|<math>\omega^{\varepsilon_0+\omega}</math> | |||
|wtw1e | |||
|12423 | |||
|- | |||
|<math>\omega^{\varepsilon_0+\omega^\omega}</math> | |||
|wtwtwr1e | |||
|124234 | |||
|- | |||
|<math>\omega^{\varepsilon_02}</math> | |||
|wte1 | |||
|12424 | |||
|- | |||
|<math>\omega^\omega^{\varepsilon_0+1}</math> | |||
|wtwt1e | |||
|1243 | |||
|- | |||
|<math>\omega^\omega^{\varepsilon_02}</math> | |||
|wtwte1 | |||
|12435 | |||
|- | |||
|<math>\varepsilon_1</math> | |||
|ee | |||
|1244 | |||
|- | |||
|<math>\omega^{\varepsilon_12}</math> | |||
|wtee1 | |||
|1244244 | |||
|- | |||
|<math>\varepsilon_2</math> | |||
|eee | |||
|12444 | |||
|- | |||
|<math>\varepsilon_\omega</math> | |||
|etw | |||
|1245 | |||
|- | |||
|<math>\varepsilon_\omega+\omega^\omega</math> | |||
|wtwr1etw | |||
|1245123 | |||
|- | |||
|<math>\varepsilon_\omega+\varepsilon_0</math> | |||
|e1etw | |||
|1245124 | |||
|- | |||
|<math>\varepsilon_\omega2</math> | |||
|e1tw | |||
|12451245 | |||
|- | |||
|<math>\omega^{\varepsilon_\omega+1}</math> | |||
|wt1etw | |||
|12452 | |||
|- | |||
|<math>\omega^{\varepsilon_\omega+\omega}</math> | |||
|wtw1etw | |||
|124523 | |||
|- | |||
|<math>\omega^{\varepsilon_\omega2}</math> | |||
|wte1tw | |||
|1245245 | |||
|- | |||
|<math>\varepsilon_{\omega+1}</math> | |||
|et1w | |||
|12454 | |||
|- | |||
|<math>\varepsilon_{\omega2}</math> | |||
|etw1 | |||
|124545 | |||
|- | |||
|<math>\varepsilon_{\omega^\omega}</math> | |||
|etwtw | |||
|12456 | |||
|- | |||
|<math>\varepsilon_{\varepsilon_0}</math> | |||
|ete | |||
|12457 | |||
|- | |||
|<math>\varepsilon_{\varepsilon_0+1}</math> | |||
|et1e | |||
|12457 | |||
|- | |||
|<math>\varepsilon_{\varepsilon_1}</math> | |||
|etee | |||
|12457 | |||
|- | |||
|<math>\varepsilon_{\varepsilon_{\varepsilon_0}}</math> | |||
|etete | |||
|124578A | |||
|- | |||
|<math>\zeta_0</math> | |||
|y | |||
|1246 | |||
|- | |||
|<math>\zeta_0+\varepsilon_0</math> | |||
|e1y | |||
|1246124 | |||
|- | |||
|<math>\zeta_0+\varepsilon_{\varepsilon_0}</math> | |||
|eter1y | |||
|124612457 | |||
|- | |||
|<math>\zeta_02</math> | |||
|y1 | |||
|12461246 | |||
|- | |||
|<math>\omega^{\zeta_0+1}</math> | |||
|wt1y | |||
|12462 | |||
|- | |||
|<math>\omega^{\zeta_0+\varepsilon_\omega}</math> | |||
|wtetwr1y | |||
|1246245 | |||
|- | |||
|<math>\omega^{\zeta_02}</math> | |||
|wty1 | |||
|1246246 | |||
|- | |||
|<math>\varepsilon_{\zeta_0+1}</math> | |||
|ye=et1y | |||
|12464 | |||
|- | |||
|<math>\omega^{\varepsilon_{\zeta_0+1}+1}</math> | |||
|wt1ye=wt1et1y | |||
|124642 | |||
|- | |||
|<math>\varepsilon_{\zeta_0+2}</math> | |||
|yee=et11y | |||
|124644 | |||
|- | |||
|<math>\varepsilon_{\zeta_0+3}</math> | |||
|yeee=et111y | |||
|1246444 | |||
|- | |||
|<math>\varepsilon_{\zeta_0+\omega}</math> | |||
|etw1y | |||
|124645 | |||
|- | |||
|<math>\varepsilon_{\zeta_0+\omega^\omega}</math> | |||
|etwtwr1y | |||
|1246456 | |||
|- | |||
|<math>\varepsilon_{\zeta_0+\varepsilon_0}</math> | |||
|ete1y | |||
|1246457 | |||
|- | |||
|<math>\varepsilon_{\zeta_02}</math> | |||
|ety1 | |||
|12464579 | |||
|- | |||
|<math>\varepsilon_{\zeta_02+1}</math> | |||
|et1y1 | |||
|124645794 | |||
|- | |||
|<math>\varepsilon_{\zeta_03}</math> | |||
|ety11 | |||
|124645794579 | |||
|- | |||
|<math>\varepsilon_{\omega^{\zeta_0+1}}</math> | |||
|etwt1y | |||
|124645795 | |||
|- | |||
|<math>\varepsilon_{\varepsilon_{\zeta_0+1}}</math> | |||
|etet1y | |||
|124645797 | |||
|- | |||
|<math>\zeta_1</math> | |||
|yy | |||
|124646 | |||
|- | |||
|<math>\varepsilon_{\zeta_1+1}</math> | |||
|et1yy=yye | |||
|1246464 | |||
|- | |||
|<math>\zeta_2</math> | |||
|yyy | |||
|12464646 | |||
|- | |||
|<math>\zeta_{\omega}</math> | |||
|ytw | |||
|12465 | |||
|- | |||
|<math>\omega^{\zeta_{\omega}2}</math> | |||
|wty1tw | |||
|124652465 | |||
|- | |||
|<math>\varepsilon_{\zeta_{\omega}+1}</math> | |||
|et1ytw | |||
|124654 | |||
|- | |||
|<math>\varepsilon_{\zeta_{\omega}+\omega^{\varepsilon_0+1}}</math> | |||
|etwt1er1ytw | |||
|124654575 | |||
|- | |||
|<math>\varepsilon_{\zeta_{\omega}+\varepsilon_\omega}</math> | |||
|etetwr1ytw | |||
|124654578 | |||
|- | |||
|<math>\varepsilon_{\zeta_{\omega}+\zeta_0}</math> | |||
|ety1ytw | |||
|124654579 | |||
|- | |||
|<math>\varepsilon_{\varepsilon_{\zeta_{\omega}2}}</math> | |||
|etety1tw | |||
|124654579878ACB | |||
|- | |||
|<math>\zeta_{\omega+1}</math> | |||
|yt1w | |||
|1246546 | |||
|- | |||
|<math>\zeta_{\omega2}</math> | |||
|ytw1 | |||
|124655 | |||
|- | |||
|<math>\zeta_{\varepsilon_0}</math> | |||
|yte | |||
|124657 | |||
|- | |||
|<math>\zeta_{\zeta_0}</math> | |||
|yty | |||
|1246579 | |||
|- | |||
|<math>\eta_0</math> | |||
|3 | |||
|12466 | |||
|- | |||
|<math>\omega^{\eta_0+1}</math> | |||
|wt13 | |||
|124662 | |||
|- | |||
|<math>\omega^{\eta_0+\varepsilon_0}</math> | |||
|wte13 | |||
|1246624 | |||
|- | |||
|<math>\omega^{\eta_0+\zeta_0}</math> | |||
|wty13 | |||
|12466246 | |||
|- | |||
|<math>\omega^{\eta_02}</math> | |||
|wt31 | |||
|124662466 | |||
|- | |||
|<math>\varepsilon_{\eta_0+1}</math> | |||
|3e=et13 | |||
|124664 | |||
|- | |||
|<math>\varepsilon_{\eta_0+\omega}</math> | |||
|etw13 | |||
|1246645 | |||
|- | |||
|<math>\varepsilon_{\eta_0+\varepsilon_0}</math> | |||
|ete13 | |||
|12466457 | |||
|- | |||
|<math>\varepsilon_{\eta_0+\zeta_0}</math> | |||
|ety13 | |||
|124664579 | |||
|- | |||
|<math>\varepsilon_{\eta_02}</math> | |||
|et31 | |||
|1246645799 | |||
|- | |||
|<math>\zeta_{\eta_0+1}</math> | |||
|3y=yt13 | |||
|1246646 | |||
|- | |||
|<math>\zeta_{\eta_0+\omega}</math> | |||
|ytw13 | |||
|12466465 | |||
|- | |||
|<math>\zeta_{\eta_0+\varepsilon_0}</math> | |||
|yte13 | |||
|124664657 | |||
|- | |||
|<math>\zeta_{\eta_0+\zeta_0}</math> | |||
|yty13 | |||
|1246646579 | |||
|- | |||
|<math>\zeta_{\eta_02}</math> | |||
|yt31 | |||
|12466465799 | |||
|- | |||
|<math>\eta_1</math> | |||
|33 | |||
|12466466 | |||
|- | |||
|<math>\eta_\omega</math> | |||
|3tw | |||
|124665 | |||
|- | |||
|<math>\eta_{\eta_0}</math> | |||
|3t3 | |||
|124665799 | |||
|- | |||
|<math>\varphi(4,0)</math> | |||
|4 | |||
|124666 | |||
|- | |||
|<math>\omega^{\varphi(4,0)2}</math> | |||
|wt41 | |||
|1246662466 | |||
|- | |||
|<math>\varepsilon_{\varphi(4,0)+1}</math> | |||
|et41 | |||
|12466645799 | |||
|- | |||
|<math>\zeta_{\varphi(4,0)+1}</math> | |||
|yt41 | |||
|124666465799 | |||
|- | |||
|<math>\eta_{\varphi(4,0)+1}</math> | |||
|3t41 | |||
|1246664665799 | |||
|- | |||
|<math>\varphi(4,1)</math> | |||
|44 | |||
|1246664666 | |||
|- | |||
|<math>\varphi(5,0)</math> | |||
|5 | |||
|1246666 | |||
|- | |||
|<math>\varphi(6,0)</math> | |||
|6 | |||
|12466666 | |||
|- | |||
|<math>\varphi(7,0)</math> | |||
|7 | |||
|124666666 | |||
|- | |||
|<math>\varphi(8,0)</math> | |||
|8 | |||
|1246666666 | |||
|- | |||
|<math>\varphi(4,\varphi(8,0)+1)+\eta_0</math> | |||
|3184=314t18 | |||
|1246666666466657999999912466 | |||
|- | |||
|<math>\varphi(9,0)</math> | |||
|9 | |||
|12466666666 | |||
|- | |||
|<math>\varphi(9,\varphi(9,0))</math> | |||
|9t9 | |||
|124666666665799999999 | |||
|- | |||
|<math>\varphi(10,0)</math> | |||
|limit | |||
|124666666666 | |||
|+ | |||
!序数(十进制 + Cantor 记号 + Veblen 记号) | |||
!扩展DcN | |||
!1-Y | |||
|- | |||
|<math>\varphi(10,0)</math> | |||
|q1111111111r | |||
|124666666666 | |||
|- | |||
|<math>\varphi(11,0)</math> | |||
|q11111111111r | |||
|1246666666666 | |||
|- | |||
|<math>\varphi(\omega,0)</math> | |||
|qwr | |||
|12467 | |||
|- | |||
|<math>\varepsilon_{\varphi(\omega,0)+1}</math> | |||
|et1qwr=qwre<br>=q1rt1qwr=qwrq1r | |||
|124674 | |||
|- | |||
|<math>\varphi(\omega,1)</math> | |||
|qwrqwr | |||
|12467467 | |||
|- | |||
|<math>\varphi(\omega,\omega)</math> | |||
|qwrtw | |||
|124675 | |||
|- | |||
|<math>\varphi(\omega+1,0)</math> | |||
|q1wr | |||
|124676 | |||
|- | |||
|<math>\varphi(\omega2,0)</math> | |||
|qw1r | |||
|1246767 | |||
|- | |||
|<math>\varphi(\varepsilon_0,0)</math> | |||
|qer | |||
|124679 | |||
|- | |||
|<math>\varphi(\varepsilon_0+\omega,\zeta_0)</math> | |||
|qw1erty(qwerty) | |||
|12467967579 | |||
|- | |||
|<math>\varphi(\zeta_0,0)</math> | |||
|qyr | |||
|124679B | |||
|- | |||
|<math>\varphi(\varphi(\omega,0),0)</math> | |||
|qqwrr | |||
|124679BC | |||
|- | |||
|<math>\Gamma_0</math> | |||
|limit | |||
|12468 | |||
|} | |||
{| class="wikitable" | |||
!序数(十进制+BOCF) | |||
!1-Y | |||
|- | |||
|<math>\psi(\Omega^{\Omega})</math> | |||
|12468 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+1)</math> | |||
|124682 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\psi(\Omega^{\Omega}))</math> | |||
|124682468 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega)</math> | |||
|124684 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^\omega)</math> | |||
|12468467 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\omega)})</math> | |||
|124684679AB | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega)})</math> | |||
|124684679AC | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega)+1})</math> | |||
|124684679AC6 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega+1)})</math> | |||
|124684679AC7 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega+\Omega)})</math> | |||
|124684679AC9 | |||
|- | |||
|<math>\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^\Omega+\Omega^\omega)})</math> | |||
|124684679AC9AB | |||
|- | |||
|<math>\psi(\Omega^{\Omega}2)</math> | |||
|12468468 | |||
|- | |||
|<math>\psi(\Omega^{\Omega+1})</math> | |||
|124686 | |||
|- | |||
|<math>\psi(\Omega^{\Omega+\psi(\Omega^{\Omega})})</math> | |||
|12468679BD | |||
|- | |||
|<math>\psi(\Omega^{\Omega2})</math> | |||
|1246868 | |||
|- | |||
|<math>\psi(\Omega^{\Omega\psi(\Omega^{\Omega})})</math> | |||
|1246879BD | |||
|- | |||
|<math>\psi(\Omega^{\Omega^2})</math> | |||
|124688 | |||
|- | |||
|<math>\psi(\Omega^{\Omega^\omega})</math> | |||
|124689 | |||
|- | |||
|<math>\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^\omega})}})</math> | |||
|124689BDFG | |||
|- | |||
|<math>\psi(\Omega^{\Omega^\Omega})</math> | |||
|12468A | |||
|- | |||
|<math>\psi(\Omega_2)</math> | |||
|1247 | |||
|- | |||
|<math>\psi(\Omega_2+\Omega^\Omega)</math> | |||
|1247468 | |||
|- | |||
|<math>\psi(\Omega_2+\psi_1(\Omega_2))</math> | |||
|124747 | |||
|- | |||
|<math>\psi(\Omega_2+\psi_1(\Omega_2+\Omega))</math> | |||
|12476 | |||
|- | |||
|<math>\psi(\Omega_2+\psi_1(\Omega_2+\Omega^\Omega))</math> | |||
|124768 | |||
|- | |||
|<math>\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2)))</math> | |||
|124769 | |||
|- | |||
|<math>\psi(\Omega_22)</math> | |||
|12477 | |||
|- | |||
|<math>\psi(\Omega_2\omega)</math> | |||
|12478 | |||
|- | |||
|<math>\psi(\Omega_2\Omega)</math> | |||
|12479 | |||
|- | |||
|<math>\psi(\Omega_2^2)</math> | |||
|1247A | |||
|- | |||
|<math>\psi(\Omega_2^{\Omega_2})</math> | |||
|1247AD | |||
|- | |||
|<math>\psi(\Omega_3)</math> | |||
|1247B | |||
|- | |||
|<math>\psi(\Omega_4)</math> | |||
|1247BG | |||
|- | |||
|<math>\psi(\Omega_\omega)</math> | |||
|1248 | |||
|} | |||
再往后涉及项嵌套的提升效应,目前对此研究不清晰,故枚举列表暂时到此为止。 | |||
{{默认排序:个人记号}} | |||
[[分类:分析]] | |||
[[分类:记号]] |
2025年8月20日 (三) 16:30的最新版本
DcN,是 318`4 创造的便于打字的记号,主要用于写 FOS 中作为序数的项,几乎不可能良定义,主要通过枚举列表来主观推算定义。DcN 的极限是 ,Y_cpper 将其扩展到 ,现在一般在 之后使用这个扩展。DcN 的所有符号都集中在电脑键盘左上方的一小片区域,qwerty13456789,456789 使用频率很低,Veblen 记号需要随时要输入括号下标希腊字母,1-Y 则有比 DcN 更长的常见表达式,所以 DcN 便于打字,是专为 FOS 中常见序数设计的记号;但因为可读性差,DcN 一直没能流传开来。
因为完全无r的 DcN 存在歧义,比如 wtw1wtww 可以是 ,也可以是 ,因此在表达 FOS 的项时,建议使用含 r 的 DcN,但是去掉所有位于表达式末尾的 r,如 =wtwtwtwrrr 记作 wtwtwtw。
1-Y 不必多说,是 Yukito 在 2019 年创造的序列记号,首次引入山脉图,在 Y(1,3) 之前有非常优秀的性质,因此也常用于表达 FOS 中作为项的序数。不过为简便,写 1-Y 表达式时通常省略 Y( ) 外壳和逗号,超过 10 的数字用拉丁字母表示,超过 36 则无写法。
在研究 FOS 的定义、构造原理时,使用 1-Y 的情况更多,因为 1-Y 的山脉结构和 FOS 中项内部的山脉结构类似;而在研究 FOS 的分析、强度形成原理时,为简便起见,使用 DcN 更多。在阅读 FOS 的枚举列表之前,请务必将本文的枚举列表熟透于心中,否则用 Veblen 记号或 OCF 写 FOS 表达式费时费力。
序数(十进制 + Cantor 记号 + Veblen 记号) | DcN | 1-Y |
---|---|---|
0 | ||
1 | 1 | |
11 | 11 | |
111 | 111 | |
w | 12 | |
1w | 121 | |
11w | 1211 | |
w1 | 1212 | |
1w1 | 12121 | |
w11 | 121212 | |
1w11 | 1212121 | |
ww | 122 | |
1ww | 1221 | |
w1ww | 12212 | |
1w1ww | 122121 | |
w11ww | 1221212 | |
1w11ww | 12212121 | |
w111ww | 122121212 | |
ww1 | 122122 | |
w1ww1 | 12212212 | |
w11ww1 | 1221221212 | |
ww11 | 122122122 | |
www | 1222 | |
w1www | 122212 | |
ww1www | 1222122 | |
1ww1www | 12221221 | |
w1ww1www | 122212212 | |
1w1ww1www | 1222122121 | |
w11ww1www | 12221221212 | |
w1ww11www | 122212212212 | |
1w11ww11www | 122212212212121 | |
www1 | 12221222 | |
wwww | 12222 | |
wwwww | 122222 | |
wtw | 123 | |
1wtw | 1231 | |
w1wtw | 12312 | |
w11wtw | 1231212 | |
ww1wtw | 123122 | |
w1tw | 123123 | |
ww1w1tw | 123123122 | |
w11tw | 123123123 | |
wt1w | 1232 | |
ww1wt1w | 1232122 | |
wtwr1wt1w | 1232123 | |
w1twr1wt1w | 1232123123 | |
wtwr1w1t1w | 12321232123 | |
w1twr1w1t1w | 12321232123123 | |
w11t1w | 123212321232 | |
wt11w | 12322 | |
wt111w | 123222 | |
wtw1 | 12323 | |
wt1w1 | 123232 | |
wtw1r1wt1w1 | 12323212323 | |
w1tw1r1wt1w1 | 1232321232312323 | |
w1tw1r1w1t1w1 | 1232321232321232312323 | |
w1twr1w1t1wr1w1tw1r1w1t1w1 | 123232123232123231232312321232123123 | |
wt11w1 | 1232322 | |
wt1w1r1wt11w1 | 1232322123232 | |
wtw11 | 1232323 | |
wtw11r1wt1w11 | 123232321232323 | |
wtw111 | 123232323 | |
wtww | 1233 | |
wtw1wwr1wt1w1ww | 1233232123323 | |
wtww1 | 1233233 | |
wtwww | 12333 | |
wtwtw | 1234 | |
wtw11t1w1 | 1234343234343234343 | |
wtwt11w1 | 12343433 | |
wtwtw11 | 12343434 | |
wtwtww | 12344 | |
wtwtwtw | 12345 | |
e | 124 | |
w1e | 12412 | |
wtwr1e | 124123 | |
e1 | 124124 | |
w1e1 | 12412412 | |
wt1e | 1242 | |
e1wt1e | 1242124 | |
w1t1e | 12421242 | |
wt11e | 12422 | |
wtw1e | 12423 | |
wtwtwr1e | 124234 | |
wte1 | 12424 | |
wtwt1e | 1243 | |
wtwte1 | 12435 | |
ee | 1244 | |
wtee1 | 1244244 | |
eee | 12444 | |
etw | 1245 | |
wtwr1etw | 1245123 | |
e1etw | 1245124 | |
e1tw | 12451245 | |
wt1etw | 12452 | |
wtw1etw | 124523 | |
wte1tw | 1245245 | |
et1w | 12454 | |
etw1 | 124545 | |
etwtw | 12456 | |
ete | 12457 | |
et1e | 12457 | |
etee | 12457 | |
etete | 124578A | |
y | 1246 | |
e1y | 1246124 | |
eter1y | 124612457 | |
y1 | 12461246 | |
wt1y | 12462 | |
wtetwr1y | 1246245 | |
wty1 | 1246246 | |
ye=et1y | 12464 | |
wt1ye=wt1et1y | 124642 | |
yee=et11y | 124644 | |
yeee=et111y | 1246444 | |
etw1y | 124645 | |
etwtwr1y | 1246456 | |
ete1y | 1246457 | |
ety1 | 12464579 | |
et1y1 | 124645794 | |
ety11 | 124645794579 | |
etwt1y | 124645795 | |
etet1y | 124645797 | |
yy | 124646 | |
et1yy=yye | 1246464 | |
yyy | 12464646 | |
ytw | 12465 | |
wty1tw | 124652465 | |
et1ytw | 124654 | |
etwt1er1ytw | 124654575 | |
etetwr1ytw | 124654578 | |
ety1ytw | 124654579 | |
etety1tw | 124654579878ACB | |
yt1w | 1246546 | |
ytw1 | 124655 | |
yte | 124657 | |
yty | 1246579 | |
3 | 12466 | |
wt13 | 124662 | |
wte13 | 1246624 | |
wty13 | 12466246 | |
wt31 | 124662466 | |
3e=et13 | 124664 | |
etw13 | 1246645 | |
ete13 | 12466457 | |
ety13 | 124664579 | |
et31 | 1246645799 | |
3y=yt13 | 1246646 | |
ytw13 | 12466465 | |
yte13 | 124664657 | |
yty13 | 1246646579 | |
yt31 | 12466465799 | |
33 | 12466466 | |
3tw | 124665 | |
3t3 | 124665799 | |
4 | 124666 | |
wt41 | 1246662466 | |
et41 | 12466645799 | |
yt41 | 124666465799 | |
3t41 | 1246664665799 | |
44 | 1246664666 | |
5 | 1246666 | |
6 | 12466666 | |
7 | 124666666 | |
8 | 1246666666 | |
3184=314t18 | 1246666666466657999999912466 | |
9 | 12466666666 | |
9t9 | 124666666665799999999 | |
limit | 124666666666 | |
序数(十进制 + Cantor 记号 + Veblen 记号) | 扩展DcN | 1-Y |
q1111111111r | 124666666666 | |
q11111111111r | 1246666666666 | |
qwr | 12467 | |
et1qwr=qwre =q1rt1qwr=qwrq1r |
124674 | |
qwrqwr | 12467467 | |
qwrtw | 124675 | |
q1wr | 124676 | |
qw1r | 1246767 | |
qer | 124679 | |
qw1erty(qwerty) | 12467967579 | |
qyr | 124679B | |
qqwrr | 124679BC | |
limit | 12468 |
序数(十进制+BOCF) | 1-Y |
---|---|
12468 | |
124682 | |
124682468 | |
124684 | |
12468467 | |
124684679AB | |
124684679AC | |
124684679AC6 | |
124684679AC7 | |
124684679AC9 | |
124684679AC9AB | |
12468468 | |
124686 | |
12468679BD | |
1246868 | |
1246879BD | |
124688 | |
124689 | |
124689BDFG | |
12468A | |
1247 | |
1247468 | |
124747 | |
12476 | |
124768 | |
124769 | |
12477 | |
12478 | |
12479 | |
1247A | |
1247AD | |
1247B | |
1247BG | |
1248 |
再往后涉及项嵌套的提升效应,目前对此研究不清晰,故枚举列表暂时到此为止。