FZ Hydra:修订间差异
来自Googology Wiki
更多操作
创建页面,内容为“注:该记号定义程度为7.4,原因是KNK不会写fake系列的规则( 主规则: <math>\psi_Z(0)=1</math> <math>\psi_Z[\&](\#+1)=\psi_Z[\&](\#)+\psi_Z[\&](\#)+\psi_Z[\&](\#)+...</math> 兼容规则(只展示KNK会写的,后续会陆续更新出完整的规则): <math>\psi_{Z_n}(\psi_{Z_{n+1}}(0))=\psi_{Z_n}[\psi_{Z_{n+1}}(0)](\psi_{Z_{n+1}}[\psi_{Z_{n+2}}(0)](\psi_{Z_{n+2}}[\psi_{Z_{n+3}}(0)](...)))</math> <math>\psi_{Z_n}[\psi_{Z_{n+1…” |
(0)(1,1,1,1,1,1)(1,1,1,1,1)(1,1,1,1)(1,1,1)(1,1)(1) |
||
(未显示同一用户的2个中间版本) | |||
第331行: | 第331行: | ||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))=\psi(\psi_1(0))</math> | <math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))=\psi(\psi_1(0))</math> | ||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))+\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}(0)))=\psi(\psi_1(0)+1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))+\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}(\psi_{Z_2}(0))))=\psi(\psi_1(0)+\psi(\Omega))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))+\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))))=\psi(\psi_1(0)+\psi(\psi_1(0)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))+\psi_{Z_2}(0))=\psi(\psi_1(0)+\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))+\psi_{Z_2}(\psi_{Z_2}(0)))=\psi(\psi_1(0)+\Omega^\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))\times2)=\psi(\psi_1(0)\times2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))\times3)=\psi(\psi_1(0)\times3)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+1))=\psi(\psi_1(0)\times\omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))))=\psi(\psi_1(0)\times\psi(\psi_1(0)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}(0)))=\psi(\psi_1(0)\times\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}(\psi_{Z_2}(0))))=\psi(\psi_1(0)\times\Omega^\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))))=\psi(\psi_1(0)^2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+1)))=\psi(\psi_1(0)^\omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}(0))))=\psi(\psi_1(0)^\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))))=\psi(\psi_1(0)^{\psi_1(0)})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))))))=\psi(\psi_1(0)^{\psi_1(0)^{\psi_1(0)}})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2))=\psi(\psi_1(1))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2)))=\psi(\psi_1(1)^2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2))))=\psi(\psi_1(1)^{\psi_1(1)})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times3))=\psi(\psi_1(2))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times4))=\psi(\psi_1(3))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(1)))=\psi(\psi_1(\omega))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))))=\psi(\psi_1(\psi_1(0)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))))))=\psi(\psi_1(\psi_1(\psi_1(0))))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))))=\psi(\Omega_2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))+\psi_{Z_2}(0))=\psi(\Omega_2+\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))+\psi_{Z_2}(\psi_{Z_2}(0)))=\psi(\Omega_2+\Omega^\Omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))=\psi(\Omega_2+\psi_1(0))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)\times2))=\psi(\Omega_2+\psi_1(1))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))\times2)=\psi(\Omega_2+\psi_1(\Omega_2))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))\times3)=\psi(\Omega_2+\psi_1(\Omega_2)\times2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))+1))=\psi(\Omega_2+\psi_1(\Omega_2)\times\omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))))))=\psi(\Omega_2+\psi_1(\Omega_2)^{\psi_1(\Omega_2)})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))+\psi_{Z_3}(0)))=\psi(\Omega_2+\psi_1(\Omega_2+1))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))+\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))+\psi_{Z_3}(0)))))=\psi(\Omega_2+\psi_1(\Omega_2+\psi_1(\Omega_2+1)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))\times2))=\psi(\Omega_2\times2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)+1)))=\psi(\Omega_2\times\omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))))))=\psi(\Omega_2\times\psi_1(\Omega_2))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)+\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))))))))=\psi(\Omega_2\times\psi_1(\Omega_2\times\psi_1(\Omega_2)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)\times2)))=\psi(\Omega_2^2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(1))))=\psi(\Omega_2^\omega)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0)))))))=\psi(\Omega_2^{\psi_1(\Omega_2)})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(0))))))))))=\psi(\Omega_2^{\psi_1(\Omega_2^{\psi_1(\Omega_2)})})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(\psi_{Z_3}(0)))))=\psi(\Omega_2^{\Omega_2})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(\psi_{Z_3}(\psi_{Z_3}(\psi_{Z_3}(0))))))=\psi(\Omega_2^{\Omega_2^{\Omega_2}})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(0))))=\psi(\psi_2(0))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z}[\psi_{Z_2}(0)](\psi_{Z_2}(0))))))=\psi(\psi_2(\psi(0)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0))))))=\psi(\psi_2(\psi_1(0)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(0))))))=\psi(\psi_2(\psi_2(0)))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(0))))))))=\psi(\psi_2(\psi_2(\psi_2(0))))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z_4}(0)))))=\psi(\Omega_3)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(\psi_{Z_4}(\psi_{Z_4}(0))))))=\psi(\Omega_3^{\Omega_3})</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}[\psi_{Z_5}(0)](\psi_{Z_5}(0)))))=\psi(\psi_3(0))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}[\psi_{Z_5}(0)](\psi_{Z_5}(\psi_{Z_5}[\psi_{Z_6}(0)](\psi_{Z_6}(0)))))))=\psi(\psi_4(0))</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}[\psi_{Z_5}(0)](\psi_{Z_5}(\psi_{Z_5}[\psi_{Z_6}(0)](\psi_{Z_6}(\psi_{Z_6}[\psi_{Z_7}(0)](\psi_{Z_7}(0)))))))))=\psi(\psi_5(0))</math> | |||
<math>\psi_Z(\psi_{Z_2}(0))=\psi(\Omega_\omega)=(0)(1,1,1)</math> | |||
<math>\psi_Z(\psi_{Z_2}(0)+1)=\psi(\Omega_\omega)\times\omega=(0)(1,1,1)(1)</math> | |||
<math>\psi_Z(\psi_{Z_2}(0)+\psi(\psi_{Z_2}(0)))=\psi(\Omega_\omega+\psi(\Omega_\omega))=(0)(1,1,1)(1)(2,1,1)</math> | |||
<math>\psi_Z(\psi_{Z_2}(0)+\psi(\psi_{Z_2}(0)+\psi(\psi_{Z_2}(0))))=\psi(\Omega_\omega+\psi(\Omega_\omega+\psi(\Omega_\omega)))=(0)(1,1,1)(1)(2,1,1)(2)(3,1,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(0)\times2)=\psi(\Omega_\omega+\Omega)=(0)(1,1,1)(1,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(0)\times3)=\psi(\Omega_\omega+\Omega\times2)=(0)(1,1,1)(1,1)(1,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(1))=\psi(\Omega_\omega+\Omega\times\omega)=(0)(1,1,1)(1,1)(2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(\psi_{Z_2}(0)))=\psi(\Omega_\omega+\Omega^2)=(0)(1,1,1)(1,1)(2,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(\psi_{Z_2}(\psi_{Z_2}(0))))=\psi(\Omega_\omega+\Omega^\Omega)=(0)(1,1,1)(1,1)(2,1)(3,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}(0)))=\psi(\Omega_\omega+\psi_1(0))=(0)(1,1,1)(1,1)(2,2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}[\psi_{Z_3}(0)](\psi_{Z_3}[\psi_{Z_4}(0)](\psi_{Z_4}(0))))=\psi(\Omega_\omega+\psi_1(\psi_2(0)))=(0)(1,1,1)(1,1)(2,2)(3,3)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(\psi_{Z_3}(0)))=\psi(\Omega_\omega+\psi_1(\Omega_\omega))=(0)(1,1,1)(1,1)(2,2,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}(\psi_{Z_3}(0)+\psi_{Z_2}(\psi_{Z_3}(0))))=\psi(\Omega_\omega+\psi_1(\Omega_\omega+\psi_1(\Omega_\omega)))=(0)(1,1,1)(1,1)(2,2,1)(2,1)(3,2,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}[\psi_{Z_3}(0)\times2](\psi_{Z_3}(0)\times2))=\psi(\Omega_\omega+\Omega_2)=(0)(1,1,1)(1,1)(2,2,1)(2,2)</math> | |||
<math>\psi_Z[\psi_{Z_2}(0)\times2](\psi_{Z_2}[\psi_{Z_3}(0)\times2](\psi_{Z_3}[\psi_{Z_4}(0)\times2](\psi_{Z_4}(0)\times2)))=\psi(\Omega_\omega+\Omega_3)=(0)(1,1,1)(1,1)(2,2,1)(2,2)(3,3,1)(3,3)</math> | |||
<math>\psi_Z(\psi_{Z_2}(0)\times2)=\psi(\Omega_\omega\times2)=(0)(1,1,1)(1,1,1)</math> | |||
这里提供一下知乎的错误版本:<math>\psi_Z[\psi_{Z_2}(0)](\psi_{Z_2}(\psi_{Z_3}(0)))=\psi(\Omega_\omega\times2)=(0)(1,1,1)(1,1,1)</math> | |||
<math>\psi_Z(\psi_{Z_2}(0)\times3)=\psi(\Omega_\omega\times3)=(0)(1,1,1)(1,1,1)(1,1,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(1)](\psi_{Z_2}(1))=\psi(\Omega_\omega\times\omega)=(0)(1,1,1)(2)</math> | |||
<math>\psi_Z(\psi_{Z_2}(1))=\psi(\Omega_\omega\times\Omega)=(0)(1,1,1)(2,1)</math> | |||
<math>\psi_Z(\psi_{Z_2}(1)+\psi_Z(\psi_{Z_2}(1)))=\psi(\Omega_\omega\times\Omega+\psi(\Omega_\omega\times\Omega))=(0)(1,1,1)(2,1)(1)(2,1,1)(3,1)</math> | |||
<math>\psi_Z[\psi_{Z_2}(1)+\psi_{Z_2}(0)](\psi_{Z_2}(1)+\psi_{Z_2}(0))=\psi(\Omega_\omega\times\Omega+\Omega)=(0)(1,1,1)(2,1)(1,1)</math> | |||
<math>\psi_Z(\psi_{Z_2}(1)+\psi_{Z_2}(0))=\psi(\Omega_\omega^2)=(0)(1,1,1)(2,1)(1,1,1)</math> | |||
[[分类:分析]] |
2025年7月30日 (三) 21:22的最新版本
注:该记号定义程度为7.4,原因是KNK不会写fake系列的规则(
主规则:
兼容规则(只展示KNK会写的,后续会陆续更新出完整的规则):
分析过程:
注:分析使用的OCF如果没有明确标记是B还是M的话,默认的是MOCF
这里提供一下知乎的错误版本: