证明论序数:修订间差异
来自Googology Wiki
更多操作
无编辑摘要 |
小无编辑摘要 |
||
(未显示同一用户的6个中间版本) | |||
第2行: | 第2行: | ||
=== 定义和性质 === | === 定义和性质 === | ||
对形式理论 <math>T</math>,其证明论序数 <math>|T|_{\text{ord}}</math>(<math>|T|</math> 或 <math>\text{PTO}(T)</math>)定义为能用超限归纳证明的原始递归良序的序型最大值。 | |||
对形式理论 <math>T</math>,其证明论序数 <math>|T|_{\text{ord}}</math> | |||
证明论序数满足: | 证明论序数满足: | ||
# | # 对任意递归序数 <math>\beta<|T|</math>,理论 <math>T</math> 能证明“所有序数小于 <math>\beta</math> 的原始递归良序关系都是良序的”;对 <math>\alpha=|T|</math>,理论 <math>T</math> 无法证明“所有序数小于 <math>\alpha</math> 的原始递归良序关系都是良序的”。 | ||
# | # 存在一种递归记号系统,自然表示所有小于 <math>|T|</math> 的序数;理论 <math>T</math> 能通过超限归纳(序数是良序集的序型,满足超限归纳原理:<math>\forall\alpha(\forall\beta<\alpha(P(\beta)\Rightarrow P(\alpha))\Rightarrow\forall\alpha P(\alpha))</math>,其中 <math>P</math> 是任意性质)到 <math>|T|</math>,证明自身的一致性(即 <math>T\nvdash\perp</math>);理论 <math>T</math> 能证明所有初等递归函数在小于 <math>|T|</math> 的序数上总停止;对任意递归序数 <math>\beta<|T|</math>,至少不满足上述条件中的一条。 | ||
# 证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序。 | |||
=== 证明论序数表 === | === 证明论序数表 === | ||
第24行: | 第17行: | ||
! scope="col" |其他体系 | ! scope="col" |其他体系 | ||
|- | |- | ||
| | | | ||
|<math>Q</math> | |<math>Q</math> | ||
|<math>\rm KP^-</math> | |<math>\rm KP^-</math> | ||
第30行: | 第23行: | ||
|- | |- | ||
|<math>\omega^2</math> | |<math>\omega^2</math> | ||
|<math>\rm RFA</math> | |<math>\rm RFA</math><br><math>\rm I\Delta_0</math> | ||
<math>\rm I\Delta_0</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\omega^3</math> | |<math>\omega^3</math> | ||
|<math>\rm RCA_0^*</math> | |<math>\rm RCA_0^*</math><br><math>\rm WKL_0^*</math><br><math>\rm I\Delta_0+exp</math> | ||
<math>\rm WKL_0^*</math> | |||
<math>\rm I\Delta_0+exp</math> | |||
| | | | ||
| | | | ||
第48行: | 第38行: | ||
|- | |- | ||
|<math>\omega^\omega</math> | |<math>\omega^\omega</math> | ||
|<math>\rm RCA_0</math> | |<math>\rm RCA_0</math><br><math>\rm WKL_0</math><br><math>\rm PRA</math><br><math>\rm RCA_0^2</math> | ||
<math>\rm WKL_0</math> | |<math>\rm CPRC</math><br><math>\rm KP^-+\Pi_1^{set}\ Fondation+IND</math> | ||
<math>\rm PRA</math> | |||
<math>\rm RCA_0^2</math> | |||
|<math>\rm CPRC</math> | |||
<math>\rm KP^-+\Pi_1^{set}\ Fondation+IND</math> | |||
| | | | ||
|- | |- | ||
第67行: | 第53行: | ||
|- | |- | ||
|<math>\varepsilon_0</math> | |<math>\varepsilon_0</math> | ||
|<math>\rm PA</math> | |<math>\rm PA</math><br><math>\rm ACA_0</math><br><math>\rm \Delta_1^1-CA_0</math><br><math>\rm \Sigma_1^1-AC_0</math> | ||
<math>\rm ACA_0</math> | |||
<math>\rm \Delta_1^1-CA_0</math> | |||
<math>\rm \Sigma_1^1-AC_0</math> | |||
|<math>\rm KP^{-\infty}</math> | |<math>\rm KP^{-\infty}</math> | ||
|<math>\rm EM_0</math> | |<math>\rm EM_0</math> | ||
第80行: | 第63行: | ||
|- | |- | ||
|<math>\varepsilon_\omega</math> | |<math>\varepsilon_\omega</math> | ||
|<math>\rm ACA_0+iRT</math> | |<math>\rm ACA_0+iRT</math><br><math>{\rm RCA_0}+\forall Y\forall n\exists X({\rm TJ}(n,X,Y))</math> | ||
<math>{\rm RCA_0}+\forall Y\forall n\exists X({\rm TJ}(n,X,Y))</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\varepsilon_{\varepsilon_0}</math> | |<math>\varepsilon_{\varepsilon_0}</math> | ||
|<math>\rm ACA</math> | |<math>\rm ACA</math><br><math>{\rm FP}_n-{\rm ACA'_0}</math><br><math>{\rm FP}_n-{\rm ACA'}</math> | ||
<math>{\rm FP}_n-{\rm ACA'_0}</math> | |||
<math>{\rm FP}_n-{\rm ACA'}</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\zeta_0</math> | |<math>\zeta_0</math> | ||
|<math>{\rm ACA_0}+\forall X\exists Y({\rm TJ}(\omega,X,Y))</math> | |<math>{\rm ACA_0}+\forall X\exists Y({\rm TJ}(\omega,X,Y))</math><br><math>\rm ACA_0+(BR)</math><br><math>\rm p_1(ACA_0)</math> | ||
<math>\rm ACA_0+(BR)</math> | |||
<math>\rm p_1(ACA_0)</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\varphi(2,\varepsilon_0)</math> | |<math>\varphi(2,\varepsilon_0)</math> | ||
|<math>{\rm ACA}+\forall X\exists Y({\rm TJ}(\omega,X,Y))</math> | |<math>{\rm ACA}+\forall X\exists Y({\rm TJ}(\omega,X,Y))</math><br><math>\rm RFN</math> | ||
<math>\rm RFN</math> | |||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\varphi(\omega,0)</math> | |<math>\varphi(\omega,0)</math> | ||
|<math>\rm \Delta_1^1-CR</math> | |<math>\rm \Delta_1^1-CR</math><br><math>\rm RCA_0^*+\Pi_1^1-CA^-</math><br><math>\rm \Sigma_1^1-DC_0</math> | ||
<math>\rm RCA_0^*+\Pi_1^1-CA^-</math> | |||
<math>\rm \Sigma_1^1-DC_0</math> | |||
| | | | ||
|<math>\rm ID_1^\#</math> | |<math>\rm ID_1^\#</math><br><math>\rm EM_0+JR</math><br><math>\rm PID</math><br><math>\rm Acc-ID(Acc)</math><br><math>\rm (\Pi_0^0(P),P\cup N)-ID</math><br><math>\rm (\Pi_0^0(P),P\land N)-ID(Acc)</math> | ||
<math>\rm EM_0+JR</math> | |||
<math>\rm PID</math> | |||
<math>\rm Acc-ID(Acc)</math> | |||
<math>\rm (\Pi_0^0(P),P\cup N)-ID</math> | |||
<math>\rm (\Pi_0^0(P),P\land N)-ID(Acc)</math> | |||
|- | |- | ||
|<math>\varphi(\nu+1,0)</math> | |<math>\varphi(\nu+1,0)</math> | ||
第123行: | 第93行: | ||
|- | |- | ||
|<math>\psi(\Omega^{\varepsilon_0})</math> | |<math>\psi(\Omega^{\varepsilon_0})</math> | ||
|<math>\rm \Delta_1^1-CA</math> | |<math>\rm \Delta_1^1-CA</math><br><math>\rm \Sigma_1^1-AC</math><br><math>\rm{(\Pi_1^0-CA)}_{<\varepsilon_0}</math> | ||
<math>\rm \Sigma_1^1-AC</math> | |||
<math>\rm{(\Pi_1^0-CA)}_{<\varepsilon_0}</math> | |||
| | | | ||
| | | | ||
第135行: | 第103行: | ||
|- | |- | ||
|<math>\Gamma_0</math> | |<math>\Gamma_0</math> | ||
|<math>\rm ATR_0</math> | |<math>\rm ATR_0</math><br><math>\rm \Delta_1^1-CA+BR</math><br><math>\rm RCA_0+\Sigma_1^0-RT</math><br><math>\rm RCA_0+\Delta_1^0-RT</math><br><math>\rm RCA_0+\Sigma_1^0-det.</math><br><math>\rm RCA_0+\Delta_1^0-det.</math><br><math>\rm FP_0</math> | ||
<math>\rm \Delta_1^1-CA+BR</math> | |<math>\rm KPi^-</math><br><math>\rm CZF^-+INAC</math> | ||
<math>\rm RCA_0+\Sigma_1^0-RT</math> | |<math>\widehat{\rm ID}_{<\omega}</math><br><math>\widehat{\rm ID}^*</math><br><math>{\rm ML}_{<\omega}</math><br><math>\rm MLU</math><br><math>\rm U(PA)</math> | ||
<math>\rm RCA_0+\Delta_1^0-RT</math> | |||
<math>\rm RCA_0+\Sigma_1^0-det.</math> | |||
<math>\rm RCA_0+\Delta_1^0-det.</math> | |||
<math>\rm FP_0</math> | |||
|<math>\rm KPi^-</math> | |||
<math>\rm CZF^-+INAC</math> | |||
|<math>\widehat{\rm ID}_{<\omega}</math> | |||
<math>\widehat{\rm ID}^*</math> | |||
<math>{\rm ML}_{<\omega}</math> | |||
<math>\rm MLU</math> | |||
<math>\rm U(PA)</math> | |||
|- | |- | ||
|<math>\varphi(1,0,\omega^\omega)</math> | |||
| | | | ||
| | |<math>\rm KPl_0+(\Sigma_1-I_\omega)</math> | ||
| | | | ||
|- | |- | ||
|<math>\varphi(1,0,\varepsilon_0)</math> | |||
|<math>\rm ATR</math> | |||
| | | | ||
| | |<math>\widehat{\rm ID}_\omega</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega^{\Omega+1})</math> | ||
| | |<math>{\rm RCA_0}+\forall X\exists M(X\in M\land M\vDash_\omega{\rm ATR_0})</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\psi(\Omega^{\Omega+\omega})</math> | |||
|<math>\rm ATR_0+\Sigma_1^1-DC</math> | |||
| | | | ||
| | |<math>\widehat{\rm ID}_{<\omega^\omega}</math> | ||
|- | |- | ||
|<math>\psi(\Omega^{\Omega+\varepsilon_0})</math> | |||
|<math>\rm ATR+\Sigma_1^1-DC</math> | |||
| | | | ||
| | |<math>\widehat{\rm ID}_{<\varepsilon_0}</math> | ||
|- | |- | ||
|<math>\psi(\Omega^{\Omega+\Gamma_0})</math> | |||
| | | | ||
| | | | ||
| | |<math>\widehat{\rm ID}_{<\Gamma_0}</math><br><math>\rm MLS</math> | ||
|- | |- | ||
| | |<math>\varphi(2,0,0)</math> | ||
| | |<math>\rm FTR_0</math> | ||
| | |<math>\rm KPh^-</math> | ||
| | |<math>\rm Aut(\widehat{ID})</math> | ||
|- | |- | ||
| | |<math>\varphi(2,0,\varepsilon_0)</math> | ||
| | |<math>\rm FTR</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\varphi(2,\varepsilon_0,0)</math> | |||
| | | | ||
| | |<math>\rm KPh^0+(F-I_\omega)</math> | ||
| | | | ||
|- | |- | ||
|<math>\psi(\Omega^{\Omega\omega})</math> | |||
| | | | ||
| | |<math>\rm KPM^-</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\varphi(\varepsilon_0,0,0)</math> | ||
| | |<math>\rm \Sigma_1^1-TDC</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\varphi(1,0,0,0)</math> | ||
| | |<math>\rm p_1(\Sigma_1^1-TDC_0)</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\psi(\Omega^{\Omega^\omega})</math> | |||
|<math>\rm RCA_0^*+\Pi_1^1-CA^-</math><br><math>\rm p_3(ACA_0)</math> | |||
| | | | ||
| | |<math>\rm FIT</math><br><math>\rm TID</math> | ||
|- | |- | ||
| | |<math>\vartheta(\Omega^\Omega)</math> | ||
| | |<math>\rm p_1(p_3(ACA_0))</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\theta_{(n+2)(\Omega^\omega)}0</math> | ||
| | |<math>{\rm ACA_0}+\Pi_{n+2}^1-{\rm BI}</math><br><math>\Pi_{n+1}^1-{\rm RFN}</math><br><math>(\Pi_{n+2}^1-{\rm BI})_0</math><br><math>(\Pi_{n+2}^1-{\rm BI})_0^-</math> | ||
| | |<math>{\rm KP}\omega^-+\Pi_{n+2}^{\rm set}-{\rm Foundation}</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\theta_{(n+2)(\Omega^\omega)}0</math> | ||
| | |<math>{\rm ACA}+\Pi_{n+2}^1-{\rm BI}</math><br><math>(\Pi_{n+2}^1-{\rm BI})^-</math> | ||
| | |<math>{\rm KP}\omega^-+{\rm IND}+\Pi_{n+2}^{\rm set}-{\rm Foundation}</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_1(0))</math> | ||
| | |<math>\rm ACA+BI</math><br><math>\rm ACA_0+\Pi_1^1-CA^-</math><br><math>\rm \Pi_1^0-FXP_0</math> | ||
| | |<math>\rm KP</math><br><math>\rm KP+\Pi_2^{set}-Reflection</math><br><math>\rm KP+(BI^*)</math><br><math>\rm KP+(ATR_0^*)</math><br><math>\rm CZF</math><br><math>{\rm KP}\omega_2\upharpoonright+\Delta_1-{\rm CA}+s\Pi_1^1-{\rm ref}</math> | ||
| | |<math>\rm ID_1</math><br><math>\rm ID_1^2</math><br><math>\rm ML_1\ V</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_2)</math> | ||
| | |<math>{\rm RCA_0}+\forall X\exists M(X\in M\land M\vDash_\omega{\rm ACA+BI})</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
|<math>\psi(\Omega_2^{\Omega_2})</math> | |||
|<math>\rm ATR_0^\bullet</math><br><math>\rm FP_0^\bullet</math><br><math>\rm \Sigma_1^1-DC_0^\bullet+(SUB^\bullet)</math><br><math>\rm \Sigma_1^1-AC_0^\bullet+(SUB^\bullet)</math> | |||
| | | | ||
| | |<math>\widehat{\rm ID}_{<\omega}^\bullet</math><math>\mathcal{U}({\rm ID_1})</math> | ||
|- | |- | ||
|<math>\psi(\psi_2(0))</math> | |||
| | | | ||
| | |<math>\rm KP+\exists\omega_1^{CK}</math> | ||
| | |<math>\rm ID_2</math><br><math>\rm ID_2^2</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA_0</math><br><math>\rm \Delta_2^1-CA_0</math><br><math>\rm RCA_0+\Sigma_1^0\land\Pi_1^0-det.</math><br><math>\rm RCA_0+\Delta_2^0-RT</math> | ||
| | |<math>{\rm KPl}^r</math><br><math>{\rm KPi}^r</math><br><math>{\rm KP}\beta^r</math> | ||
| | |<math>{\rm ID}_{<\omega}</math><br><math>({\rm ID}_{<\omega}^2)_0</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega\cdot\omega^\omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-IND</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega\cdot\varepsilon_0)</math> | ||
| | |<math>\rm \Pi_1^1-CA</math> | ||
| | |<math>\rm W-KPl</math> | ||
| | |<math>\rm W-ID_\omega</math><br><math>\rm ID_{<\omega}^2</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega\cdot\Omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA+BR</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega^\omega)</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-BI</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_\omega^{\omega^\omega})</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-BI+\Pi_3^1-IND</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\psi_\omega(0))</math> | ||
| | |<math>\rm \Pi_1^1-CA+BI</math> | ||
| | |<math>\rm KPl</math> | ||
| | |<math>\rm ID_\omega</math><br><math>\rm BID_\omega^2</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\omega^\omega})</math> | ||
| | |<math>\rm \Delta_2^1-CR</math><br><math>\rm (\Pi_1^1-CA_{<\omega^\omega})</math> | ||
| | |<math>{\rm KPl}_{\omega^\omega}^r</math> | ||
| | |<math>\rm ID_{<\omega^\omega}</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\varepsilon_0})</math> | ||
| | |<math>\rm \Delta_2^1-CA</math><br><math>\rm \Sigma_2^1-AC</math><br><math>\rm (\Pi_1^1-CA_{<\varepsilon_0})</math> | ||
| | |<math>{\rm KPl}_{\varepsilon_0}^r</math><br><math>\rm W-KPi</math><br><math>{\rm W-KP}\beta</math> | ||
| | |<math>\rm ID_{<\varepsilon_0}</math><br><math>\rm ID_{<\varepsilon_0}^2</math><br><math>\rm BID_{<\varepsilon_0}^2</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\nu\cdot\omega})</math> | ||
| | |<math>\rm (\Pi_1^1-CA_\nu^+)_0</math> | ||
| | |<math>{\rm KPl}_{\nu+}^r</math> | ||
| | |<math>\rm ID_{<\nu\cdot\omega}</math><br><math>\rm (PID_\nu^2)_0</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_\gamma\cdot\omega)</math> | ||
| | |<math>\rm (\Pi_1^1-CA_{\gamma-})_0</math> | ||
| | |<math>{\rm KPl}_\gamma^r</math> | ||
| | |<math>\rm (NUID_\gamma^2)_0</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\nu\cdot\omega}\cdot\varepsilon_0))</math> | ||
| | |<math>\rm \Pi_1^1-CA_\nu^+</math> | ||
| | |<math>\rm W-KPl_{\nu+}</math> | ||
| | |<math>\rm W-ID_{\nu\cdot\omega}</math><br><math>\rm PID_\nu^2</math> | ||
|- | |- | ||
| | |<math>\psi(\Omega_\gamma\cdot\varepsilon_0)</math> | ||
| | |<math>\rm (\Pi_1^1-CA_\gamma)</math><br><math>\rm \Pi_1^1-CA_{\gamma-}</math> | ||
| | |<math>\rm W-KPl_\gamma</math> | ||
| | |<math>\rm W-ID_\gamma</math><br><math>\rm ID_\gamma^2</math><br><math>\rm NUID_\gamma^2</math> | ||
|- | |- | ||
|<math>\psi(\Omega_{\nu\cdot\omega}\cdot\Omega))</math> | |||
|<math>\rm \Pi_1^1-CA_\nu^++BR</math> | |||
| | | | ||
| | |<math>\rm PID_\nu^2+BR</math> | ||
|- | |- | ||
|<math>\psi(\Omega_\gamma\cdot\Omega)</math> | |||
|<math>\rm \Pi_1^1-CA_{\gamma-}+BR</math> | |||
| | | | ||
| | |<math>\rm NUID_\gamma^2+BR</math> | ||
|- | |- | ||
|<math>\psi(\Omega_{\omega^\gamma})</math> | |||
|<math>\rm (\Pi_1^1-CA_{\omega\gamma})_0</math><br><math>\rm (\Pi_1^1-CA_{<\omega\gamma})</math><br><math>\rm (\Pi_1^1-CA_{<\omega\gamma})+BI</math> | |||
| | | | ||
| | |<math>\rm (ID_{\omega^\gamma}^2)_0</math><br><math>\rm ID_{<\omega^\gamma}</math><br><math>\rm BID_{<\omega^\gamma}^2</math><br><math>\rm (ID_{<\nu}^2)+BI</math> | ||
|- | |- | ||
| | |<math>\psi(\psi_\nu(0))</math> | ||
| | |<math>\rm (\Pi_1^1-CA_\nu)_0</math> | ||
| | |<math>\rm KPl_\nu</math> | ||
| | |<math>\rm ID_\nu</math><br><math>\rm (ID_\nu^2)_0</math> | ||
|- | |- | ||
|<math>\psi(\psi_\nu(\varepsilon_0))</math> | |||
|<math>\rm \Pi_1^1-CA_\nu</math> | |||
| | | | ||
| | |<math>\rm ID_\nu^2</math> | ||
|- | |- | ||
|<math>\psi(\psi_\nu(\Omega))</math> | |||
|<math>\rm \Pi_1^1-CA_\nu+BR</math> | |||
| | | | ||
| | |<math>\rm ID_\nu^2+BR</math> | ||
|- | |- | ||
|<math>\psi(\psi_\nu(\psi_\nu(0)))</math> | |||
| | | | ||
| | | | ||
| | |<math>\rm BID_\nu^2</math> | ||
|- | |- | ||
| | |<math>\psi(\psi_{\nu+1}(0))</math> | ||
| | |<math>\rm \Pi_1^1-CA_\nu+BI</math> | ||
| | |<math>\rm KPl_{\nu+1}</math> | ||
| | |<math>\rm ID_{\nu+1}</math><br><math>\rm ID_\nu^2+BI</math> | ||
|- | |- | ||
| | |<math>\psi(\psi_{\nu\cdot\omega}(0))</math> | ||
| | |<math>\rm \Pi_1^1-CA_\nu^++BI</math> | ||
| | |<math>\rm KPl_{\nu+}</math> | ||
| | |<math>\rm ID_{\nu\cdot\omega}</math><br><math>\rm PID_\nu^2+BI</math><br><math>\rm PBID_\nu^2</math> | ||
|- | |- | ||
| | |<math>\psi(\psi_\gamma(0))</math> | ||
| | |<math>\rm (\Pi_1^1-CA_\gamma)_0</math><br><math>\rm (\Pi_1^1-CA_\gamma)+BI</math><br><math>\rm \Pi_1^1-CA_{\gamma-}+BI</math> | ||
| | |<math>\rm KPl_\gamma</math> | ||
| | |<math>\rm ID_\gamma</math><br><math>\rm (ID_\gamma^2)_0</math><br><math>{\rm ID}_\gamma^i(\mathcal{O}){\rm BID}_\nu^2</math><br><math>\rm ID_\gamma^2+BI</math><br><math>\rm NUID_\gamma^2+BI</math> | ||
|- | |- | ||
|<math>\psi(\psi_\Omega(0))</math> | |||
| | | | ||
| | |<math>\rm KPl^*</math><br><math>{\rm KPl}_\Omega^r</math> | ||
| | |<math>\rm ID_{\prec*}</math><br><math>\rm BID^{2*}</math><br><math>\rm ID^{2*}+BI^2</math> | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_I(0))</math> | ||
| | |<math>\rm \Pi_1^1-TR_0</math><br><math>\rm \Pi_1^1-TR_0+\Delta_2^1-CA_0</math><br><math>\rm \Delta_2^1-CA+BI(impl\ \Sigma_2^1)</math><br><math>\rm \Delta_2^1-CA+BR(impl\ \Sigma_2^1)</math><br><math>\rm RCA_0+\Delta_2^0-det.</math><br><math>\rm RCA_0+\Delta_1^1-RT</math> | ||
| | |<math>{\rm Aut-KPl}^r</math><br><math>{\rm Aut-KPl}^r+{\rm KPi}^r</math><br><math>\rm KPi^\omega+FOUNDR(impl-\Sigma)</math><br><math>\rm KPi^\omega+FOUND(impl-\Sigma)</math> | ||
| | |<math>{\rm Aut-ID}_0^{pos}</math><br><math>{\rm Aut-ID}_0^{mon}</math> | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_I(0)\cdot\varepsilon_0)</math> | ||
| | |<math>\rm \Pi_1^1-TR</math> | ||
| | |<math>\rm W-Aut-KPl</math> | ||
| | |<math>{\rm Aut-ID}^{pos}</math><br><math>{\rm Aut-ID}^{mon}</math><br><math>\rm Aut-KPl^\omega</math> | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\psi_{\Omega_{\psi_I(0)+1}}(0))</math> | ||
| | |<math>\rm \Pi_1^1-TR+BI</math> | ||
| | |<math>\rm Aut-KPl</math> | ||
| | |<math>{\rm Aut-ID}_2^{pos}</math><br><math>{\rm Aut-ID}_2^{mon}</math><br><math>\rm Aut-BID</math> | ||
|- | |- | ||
|<math>\psi_{\Omega_1}(\psi_I(I^\omega))</math> | |||
|<math>\rm \Delta_2^1-TR_0</math><br><math>\rm \Sigma_2^1-TRDC_0</math><br><math>\rm \Delta_2^1-CA_0+\Sigma_2^1-BI</math> | |||
| | | | ||
| | |<math>{\rm KPi}^r+(\Sigma-{\rm FOUND})</math><br><math>{\rm KPi}^r+(\Sigma-{\rm REC})</math> | ||
|- | |- | ||
|<math>\psi_{\Omega_1}(\psi_I(I^{\varepsilon_0}))</math> | |||
|<math>\rm \Delta_2^1-TR</math><br><math>\rm \Sigma_2^1-TRDC</math><br><math>\rm \Delta_2^1-CA+\Sigma_2^1-BI</math> | |||
| | | | ||
| | |<math>\rm KPi^\omega+(\Sigma-FOUND)</math><br><math>\rm KPi^\omega+(\Sigma-REC)</math> | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\varepsilon_{I+1})</math> | ||
| | |<math>\rm \Delta_2^1-CA+BI</math><br><math>\rm \Sigma_2^1-AC+BI</math> | ||
|<math>\rm KPi</math><br><math>{\rm KP}\beta</math><br><math>\rm CZF+REA</math> | |||
|<math>\rm T_0</math> | |||
| | |||
| | |||
|- | |- | ||
|<math>\psi_{\Omega_1}(\Omega_{I+\omega})</math> | |||
| | | | ||
| | |<math>\rm KPi^+</math> | ||
| | |<math>\rm ML_1\ W</math><br><math>\rm KP_1\ W</math><br><math>\rm IARI</math> | ||
|- | |- | ||
| | |<math>\psi_{\Omega_1}(\varepsilon_{M+1})</math> | ||
| | |<math>\rm \Delta_2^1-CA+BI+(M)</math> | ||
| | |<math>\rm KPM</math><br><math>\rm CZFM</math> | ||
| | | | ||
|- | |- | ||
|<math>\psi_{\Omega_1}(\Omega_{M+\omega})</math> | |||
| | | | ||
| | |<math>\rm KPM^+</math> | ||
| | |<math>\rm MLM</math><br><math>\rm Agda</math> | ||
|- | |- | ||
| | |<math>\Psi_{\Omega_1}^0(\varepsilon_{K+1})</math> | ||
| | |<math>{\rm ACA+BI}+\Pi_4^1-\beta\text{-model-Reflection}</math> | ||
| | |<math>{\rm KP}+\Pi_3^{\rm set}\text{-Reflection}</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\Psi_\mathbb{X}^{\varepsilon_{\xi_n+1}}</math> | ||
| | |<math>{\rm ACA+BI}+\Pi_{n+5}^1-\beta\text{-model-Reflection}</math> | ||
| | |<math>{\rm KP}+\Pi_{n+4}^{\rm set}\text{-Reflection}</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\Psi_\mathbb{X}^{\varepsilon_{\Xi+1}}</math> | ||
| | |<math>{\rm ACA+BI}-\beta\text{-model-Reflection}</math> | ||
| | |<math>{\rm KP}+\Pi_\omega^{\rm set}\text{-Reflection}</math> | ||
| | | | ||
|- | |- | ||
|<math>\Psi_\mathbb{H}^{\varepsilon_{\Upsilon+1}}</math> | |||
| | | | ||
| | |<math>{\rm KPi}+\forall\alpha\exists\kappa(L_\kappa\prec_1L_{\kappa+\alpha})</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\psi(\Omega_{\mathbb{S}+\omega})</math> | ||
| | |<math>\rm \Pi_1^1-CA_0+\Pi_2^1-CA^-</math> | ||
| | |<math>{\rm KPl}^r+\exists M(\text{Trans}(M)\land M\prec_1 V)</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\Psi_\mathbb{K}^{\varepsilon_{I+1}}</math> | ||
| | |<math>\rm \Delta_2^1-CA+BI+\Pi_2^1-CA^-</math> | ||
| | |<math>{\rm KPi}+\exists M(\text{Trans}(M)\land M\prec_1 V)</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\mathcal{I}_\omega\cap\omega_1^{\rm CK}</math> | ||
| | |<math>\rm \Pi_2^1-CA_0</math><br><math>\rm \Delta_3^1-CA_0</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\mathcal{I}_{\omega+1}\cap\omega_1^{\rm CK}</math> | ||
| | |<math>\rm \Pi_2^1-CA+BI</math> | ||
| | |<math>\rm KP+\Sigma_1^{set}-Separation</math><br><math>{\rm KPi}+\forall\alpha\exists\beta(\beta>\alpha)(\beta\text{ stable})</math> | ||
| | | | ||
|- | |- | ||
| | |<math>\mathcal{I}_{\varepsilon_0}\cap\omega_1^{\rm CK}</math> | ||
| | |<math>\rm \Delta_3^1-CA</math><br><math>\rm \Sigma_3^1-AC</math> | ||
| | | | ||
| | | | ||
|- | |- | ||
| | |<math>\text{maybe }\psi_\Omega(\varepsilon_{\mathbb{I}+1})</math> | ||
| | |<math>\rm \Delta_3^1-CA+BI</math><br><math>\rm \Sigma_3^1-AC+BI</math><br><math>\rm \Sigma_3^1-DC+BI</math> | ||
| | |<math>{\rm KP}+\Delta_2^{\rm set}\text{-Separation}</math> | ||
| | | | ||
|- | |- | ||
|<math>\psi_\Omega(\varepsilon_{\mathbb{I}+1})</math> | |||
| | | | ||
| | |<math>{\rm KP}+\Pi_1^{\rm set}\text{-Collection}</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |<math>\Pi_{n+3}^1{\rm-CA+BI}</math> | ||
| | |<math>{\rm KP}+\Sigma_{n+2}^{\rm set}\text{-Separation}</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |<math>\Pi_{n+3}^1{\rm-CA}+\Sigma_{n+3}^1{\rm-AC+BI}</math> | ||
| | |<math>{\rm KP^-}+\Sigma_{n+2}^{\rm set}\text{-Separation}+\Sigma_{n+2}^{\rm set}\text{-Collection}</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |<math>\rm Z_2=\Pi_\infty^1-CA</math><br><math>\rm \Delta_1^2-CA_0</math><br><math>\rm Z_2+\Sigma_\infty^1-AC</math> | ||
| | |<math>{\rm KP}+\Sigma_\omega^{\rm set}\text{-Separation}</math><br><math>{\rm KP^-}+\Sigma_\omega^{\rm set}\text{-Separation}+\Sigma_\omega^{\rm set}\text{-Collection}</math><br><math>\rm ZFC^-=ZFC-Powerset</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |<math>{\rm Z}_{n+3}=\Pi_\infty^{n+2}{\rm-CA}</math><br><math>\Delta_1^{n+3}{\rm-CA_0}</math> | ||
| | |<math>{\rm ZFC^-+V=L+}\exists\omega_{n+1}</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |<math>\rm Z_\infty=\Pi_0^\infty-CA</math> | ||
| | |<math>\rm Z</math><br><math>\rm ZC</math><br><math>\rm IZ</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
|<math>\rm IZF=CZF+Powerset+\Pi_\omega^{set}-Reflection</math><br><math>\rm ZF=CZF+LEM=IZF+LEM</math><br><math>\rm ZFC</math><br><math>\rm ZFC+V=L</math><br><math>\rm AST</math><br><math>\rm IST</math><br><math>\rm NBG=GBC</math><br><math>\rm GB</math> | |||
| | | | ||
| | |} | ||
ZFC 相关证明论序数: | |||
* <math>\mathrm{S}_0 = (\mathrm{Ext}) + (\mathrm{Null}) + (\mathrm{Pair}) + (\mathrm{Union}) + (\mathrm{Diff})\ (\text{Rudimentary set theory})</math> | |||
* <math>\mathrm{S}_1 = \mathrm{S}_0 + (\mathrm{Powerset})</math> | |||
* <math>\mathrm{M}_0 = \mathrm{S}_1 + (\Delta_0^{\mathrm{set}} - \mathrm{Separation})</math> | |||
* <math>\mathrm{M}_1 = \mathrm{M}_0 + (\mathrm{Regularity}) + (\mathrm{Transitive\ Containment})</math> | |||
* <math>\mathrm{KP}^- = \mathrm{S}_0 + (\mathrm{Infinity}) + (\Delta_0^{\mathrm{set}} - \mathrm{Separation}) + (\Delta_0^{\mathrm{set}} - \mathrm{Collection})</math> | |||
* <math>\mathrm{KP}^{-\infty} = \mathrm{S}_0 + (\mathrm{Foundation}) + (\Delta_0^{\mathrm{set}} - \mathrm{Separation}) + (\Delta_0^{\mathrm{set}} - \mathrm{Collection})</math> | |||
* <math>\mathrm{KP} = \mathrm{KP}^{-\infty} + (\mathrm{Infinity}) = \mathrm{KP}^- + (\mathrm{Foundation})</math> | |||
* <math>\mathrm{KPl} = \mathrm{KP} + (\text{universe limit of admissible sets})</math> | |||
* <math>\mathrm{KPi} = \mathrm{KP} + (\text{recursively inaccessible universe})</math> | |||
* <math>\mathrm{KPh} = \mathrm{KP} + (\text{recursively hyperinaccessible universe})</math> | |||
* <math>\mathrm{KPM} = \mathrm{KP} + (\text{recursively Mahlo universe})</math> | |||
* <math>\mathrm{ZBQC} = \mathrm{M}_0 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\mathrm{Choice})</math><br><math>\mathrm{NFU} + (\mathrm{Infinity}) + (\mathrm{Choice})</math> | |||
* <math>\mathrm{MAC} = \mathrm{M}_1 + (\mathrm{Infinity}) + (\mathrm{Choice}) = \mathrm{ZBQC} + (\text{Transitive Containment})</math> | |||
* <math>\mathrm{MOST} = \mathrm{MAC} + (\Delta_0^{\mathrm{set}} - \mathrm{Collection}) = \mathrm{ZBQC} + \mathrm{KP} + (\Sigma_1^{\mathrm{set}} - \mathrm{Separation})</math> | |||
* <math>\mathrm{Z} = \mathrm{S}_1 + (\mathrm{Regularity}) + (\mathrm{Infinity}) + (\Sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math> | |||
* <math>\mathrm{ZC} = \mathrm{Z} + (\mathrm{Choice}) = \mathrm{ZBQC} + (\sigma_\omega^{\mathrm{set}} - \mathrm{Separation})</math> | |||
* <math>\mathrm{MAC} + \forall m (\beth_{\beth_{m}}\text{ exists})</math><br><math>\mathrm{NFU} + (\mathrm{Infinity}) + (\mathrm{Choice})</math> | |||
* <math>\mathrm{Z} + (\Pi_2^{\mathrm{set}} - \mathrm{Replacement})</math><br><math>\mathrm{NFU}^* = \mathrm{NFU} + (\mathrm{Counting}) + (\mathrm{Strongly\ Cantorian\ Separation})</math> | |||
* <math>\mathrm{Z} + (\Pi_m^{\mathrm{set}} - \mathrm{Replacement})</math> | |||
* <math>\mathrm{ZF} = \mathrm{Z} + (\Pi_\omega^{\mathrm{set}} - \mathrm{Replacement})</math><br><math>\mathrm{AST}</math><br><math>\mathrm{GB}</math> | |||
* <math>\mathrm{ZFC} = \mathrm{ZF} + (\text{Choice})</math><br><math>\mathrm{NBG} = \mathrm{GBC} = \mathrm{GB} + (\text{Global Choice})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a worldly cardinal})</math> | |||
* <math>\mathrm{NBG} + (\text{there is a stationary proper class of worldly cardinals})</math> | |||
* <math>\mathrm{NBG} + (\text{Class Forcing Theorem})</math><br><math>\mathrm{NBG} + (\text{Clopen Class Game Determinacy})</math> | |||
* <math>\mathrm{MK} = \mathrm{NBG} + (\Pi_{\infty}^{\mathrm{class}} - \mathrm{CA})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an inaccessible cardinal})</math><br><math>\mathrm{ZFC} + (\Pi_{1}^{1}\ \text{Perfect Set Property})</math><br><math>\mathrm{ZFC} + (\Sigma_{3}^{1}\ \text{Lebesgue measurability})</math> | |||
* <math>\mathrm{ZFC} + (\text{there are } \omega\ \text{inaccessible cardinals})</math><br><math>\mathrm{ZFC} + (\forall\alpha(\omega \leq \alpha \leq \aleph_{\omega} \Rightarrow |\mathrm{V}_{\alpha} \cap L| = |\alpha|))</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a proper class of inaccessible cardinals})</math><br><math>\mathrm{ZFC} + (\text{Grothendieck Universe Axiom})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a } \Sigma_{n}^{\mathrm{set}}\text{-reflecting cardinal})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a } \sigma_{\omega}^{\mathrm{set}}\text{-reflecting cardinal})</math><br><math>\mathrm{ZFC} + (\text{Ord is Mahlo})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an uplifting cardinal})</math><br><math>\mathrm{ZFC} + (\text{Resurrection Axioms})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a Mahlo cardinal})</math> | |||
* <math>\mathrm{SMAH} = \mathrm{ZFC} + (\text{there is a } n\text{-Mahlo cardinal})_{n\in\mathbb{N}}</math><br><math>\mathrm{NFUA} = \mathrm{NFU} + (\text{Infinity}) + (\text{Cantorian Sets})</math> | |||
* <math>\mathrm{SMAH}^{+} = \mathrm{ZFC} + \forall n(\text{there is a } n\text{-Mahlo cardinal})</math> | |||
* <math>\mathrm{MK} + (\text{Ord is weakly compact})</math><br><math>\mathrm{GPK}_{\infty}^{+} = \mathrm{GPK}^{+} + (\text{Infinity})</math><br><math>\mathrm{NFUB} =\mathrm{NFU} +(\text{Infinity}) + (\text{Cantorian Sets}) + (\text{Small Ordinals})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a weakly compact cardinal})</math><br><math>\mathrm{ZFC} + (\omega_{2}\ \text{has the tree property})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a totally indescribable cardinal})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a subtle cardinal})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an ineffable cardinal})</math> | |||
* <math>\mathrm{ZFC} + \forall\alpha(\alpha < \omega_{1} \Rightarrow \text{there is a } \alpha\text{-Erdős cardinal})</math> | |||
* <math>\mathrm{ZFC} + (0^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (L \models \aleph_{\omega}\ \text{is regular})</math><br><math>\mathrm{ZFC} + \forall \alpha (\alpha \geq \omega \Longrightarrow |V_{\alpha} \cap L| = |\alpha|)</math><br><math>\mathrm{ZFC} + (\text{parameter-free } \Sigma_{1}^{1}\text{-determinacy})</math> | |||
* <math>\mathrm{ZFC} + \forall x\ (x \in \mathbb{R} \Longrightarrow x^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (\Sigma_{1}^{1}\text{-determinacy})</math> | |||
* <math>\mathrm{ZFC} + \forall x\ (x^{\sharp}\ \text{exists})</math><br><math>\mathrm{ZFC} + (\Sigma_{2}^{1}\ \text{universal Baireness})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is an } \omega_{1}\text{-Erdős cardinal})</math><br><math>\mathrm{ZFC} + (\text{Chang's Conjecture})</math> | |||
* <math>\mathrm{SRP} = \mathrm{ZFC} + (\text{there is cardinal with the } n\text{-stationary Ramsey property})_{n \in \mathbb{N}}</math> | |||
* <math>\mathrm{SRP}^{+} = \mathrm{ZFC} + \forall n\ (\text{there is a cardinal with the } n\text{-stationary Ramsey property})</math> | |||
* <math>\mathrm{MK} + (\text{Ord is measurable})</math><br><math>\mathrm{NFUM} = \mathrm{NFU} + (\text{Infinity}) + (\text{Large Ordinals}) + (\text{Small Ordinals})</math> | |||
* <math>\mathrm{ZFM} = \mathrm{ZFC} + (\text{there is a measurable cardinal})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{1}}\ \text{is precipitous})</math><br><math>\mathrm{ZF} + (\omega_{1}\ \text{is measurable})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = 2)</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{2}}\ \text{is precipitous})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a measurable cardinal } \kappa\ \text{such that } o(\kappa) = \kappa^{++})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{ZFC} + (2^{\aleph_{\omega}} = \aleph_{\omega + 2})</math> | |||
* <math>\mathrm{ZFC} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{2} + (\Delta_{2}^{1}\text{-determinacy})\ (\text{conjectural})</math> | |||
* <math>\mathrm{MK} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{3}+ (\text{lightface } \Delta_{2}^{1}\text{-determinacy})</math> | |||
* <math>\mathrm{NBG} + (\text{Ord is Woodin})</math><br><math>\mathrm{ZFC} + \neg \mathrm{SCH}</math><br><math>\mathrm{Z}_{3}+ (\Delta_{2}^{1}\text{-determinacy})</math> | |||
* <math>\mathrm{ZFC} + (\text{there is a Woodin cardinal})</math><br><math>\mathrm{ZFC} + (\Delta_{2}^{1}\text{-determinacy})</math><br><math>\mathrm{ZFC} + (\mathrm{OD} \models \mathrm{AD})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_{1}}\ \text{is } \omega_{2}\text{-saturated})</math> | |||
* <math>\mathrm{ZFC} + (\text{there are } n\ \text{Woodin cardinals})_{n \in \mathbb{N}}</math><br><math>\mathrm{Z}_{2} + (\mathrm{PD})</math> | |||
* <math>\mathrm{ZFC} + (\text{there are } \omega \text{ Woodin cardinals})</math><br><math>\mathrm{ZF} + (\mathrm{AD})</math><br><math>\mathrm{ZFC} + (L(\mathbb{R}) \models \mathrm{AD})</math><br><math>\mathrm{ZFC} + (\mathrm{OD}(\mathbb{R}) \models \mathrm{AD})</math> | |||
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\omega_1)\text{-strongly compact})</math><br><math>\mathrm{ZFC} + (\mathrm{NS}_{\omega_1} \text{ is } \omega_1\text{-dense})</math> | |||
* <math>\mathrm{ZF} + \mathrm{DC} + (\omega_1 \text{ is } \mathcal{P}(\mathbb{R})\text{-strongly compact})</math><br><math>\mathrm{ZF} + \mathrm{DC} + (\mathrm{AD}_{\mathbb{R}})</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a superstrong cardinal)}</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a subcompact cardinal)}</math><br><math>\mathrm{ZFC} + (V = L[\vec{E}]) + \exists\kappa(\neg\square_{\kappa})</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a strongly compact cardinal)}</math><br><math>\mathrm{ZFC} + \text{(Proper Forcing Axiom)}</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a supercompact cardinal)}</math><br><math>\mathrm{ZFC} + \text{(Martin's Maximum)}</math> | |||
* <math>\mathrm{ZFC} + \forall n \text{(there is a proper class of } C^{(n)}\text{-extendible cardinals)}</math><br><math>\mathrm{ZFC} + \text{(Vopěnka's Principle)}</math> | |||
* <math>\mathrm{ZFC} + \text{(there is a high-jump cardinal)}</math> | |||
* <math>\mathrm{HUGE} = \mathrm{ZFC} + \text{( there is a } n\text{-huge cardinal )}_{n\in\mathbb{N}}</math> | |||
* <math>\mathrm{ZFC} + \text{(Wholeness Axiom } \mathrm{WA}_n)</math> | |||
* <math>\mathrm{ZFC} + \mathrm{I}3 = \mathrm{ZFC} + \exists\lambda(E_0(\lambda))</math> | |||
* <math>\mathrm{ZFC} + \mathrm{I}2 = \mathrm{ZFC} + \exists\lambda(E_1(\lambda))</math> | |||
* <math>\mathrm{ZFC} + \mathrm{I}1 = \mathrm{ZFC} + \exists\lambda(E_{\omega}(\lambda))</math> | |||
* <math>\mathrm{ZFC} + \mathrm{I}0</math> | |||
* <math>\mathrm{ZF} + \mathrm{DC} + \exists\lambda\exists j : V_{\lambda + 2} \prec_{\Sigma_{\omega}^{\mathrm{set}}} V_{\lambda + 2}</math> | |||
* <math>\mathrm{ZF}_j + \mathrm{DC} + \text{(there is a Reinhardt cardinal )}</math> | |||
* <math>\mathrm{ZF} + \mathrm{DC} + \text{(there is a Berkeley cardinal)}</math> | |||
[[分类:集合论相关]] |
2025年7月27日 (日) 13:21的最新版本
证明论序数(或称证明论强度序数,Proof-Theoretic Ordinal)是衡量形式理论强度的核心工具,通过将理论映射到序数上,刻画其能证明的良序关系的复杂度。该概念源于希尔伯特的证明论计划,旨在通过有限方法证明数学基础理论的一致性,后由阿克曼(Wilhelm Ackermann)和根岑(Gerhard Gentzen)发展为序数分析技术。
定义和性质
对形式理论 ,其证明论序数 ( 或 )定义为能用超限归纳证明的原始递归良序的序型最大值。
证明论序数满足:
- 对任意递归序数 ,理论 能证明“所有序数小于 的原始递归良序关系都是良序的”;对 ,理论 无法证明“所有序数小于 的原始递归良序关系都是良序的”。
- 存在一种递归记号系统,自然表示所有小于 的序数;理论 能通过超限归纳(序数是良序集的序型,满足超限归纳原理:,其中 是任意性质)到 ,证明自身的一致性(即 );理论 能证明所有初等递归函数在小于 的序数上总停止;对任意递归序数 ,至少不满足上述条件中的一条。
- 证明论序数必为递归序数(recursive ordinal),即存在递归关系定义其良序。
证明论序数表
证明论序数 | 算术论体系 | 集合论体系 | 其他体系 |
---|---|---|---|
ZFC 相关证明论序数: