打开/关闭搜索
搜索
打开/关闭菜单
223
68
64
2725
Googology Wiki
导航
首页
最近更改
随机页面
特殊页面
上传文件
打开/关闭外观设置菜单
通知
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。
user-interface-preferences
个人工具
创建账号
登录
查看“︁fffz分析Part8”︁的源代码
来自Googology Wiki
分享此页面
查看
阅读
查看源代码
查看历史
associated-pages
页面
讨论
更多操作
←
fffz分析Part8
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、
评审员
您可以查看和复制此页面的源代码。
本词条展示[[Fake Fake Fake Zeta|fffz]]分析的第八部分。使用<math>MOCF</math>和[[BMS]]对照 \begin{align}s\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^\omega)\times\omega](\psi_Z[\omega^\omega](\omega^\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^\omega)\times\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,1,1)=\psi(1-\lambda\alpha.(\alpha\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^\omega)\times\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,1,1)(3,2,0)=\psi((\lambda\alpha.(\alpha+1)-\Pi_0)~~1-(\lambda\alpha.(\alpha\times2)-\Pi_0))\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)=\psi(1-\lambda\alpha.(\alpha\times2)-\Pi_1)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,1,1)=\psi(1-\lambda\alpha.(\alpha\times2)-\Pi_2)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\alpha\times2+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\zeta_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\alpha\times2+\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,0,0)=\psi(\lambda\alpha.(\alpha\times2+\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)=\psi(\lambda\alpha.(\alpha\times2+\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))+\varepsilon_0)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(1,1,1)=\psi(\lambda\alpha.(\alpha\times2+\Omega_\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))+\varepsilon_1)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(1,1,1)(2,2,0)=\psi(\lambda\alpha.(\alpha\times2+\lambda\alpha.(\alpha+1)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))+\psi_Z[\omega^\omega](\omega^\omega)\times\omega](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))+\psi_Z[\omega^\omega](\omega^\omega)\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times2+\lambda\alpha.(\alpha\times2)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,1,1)(6,2,0)(7,2,0)(8,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times4)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega+1}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)=\psi(\lambda\alpha.(\alpha\times\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+2}](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\alpha\times\omega+1)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times(\omega+1))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,1,1)(6,2,0)(7,2,0)(8,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha\times(\omega+2))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega](\omega^{\omega+1})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)=\psi(\lambda\alpha.(\alpha\times\omega\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega,\omega^{\omega+2}](\psi_Z[\omega^\omega](\omega^{\omega+1}))))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(5,1,1)(6,2,0)(7,2,0)(8,1,0)(7,2,0)=\psi(\lambda\alpha.(\alpha\times\omega\times3)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega+2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha\times\omega^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega+3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha\times\omega^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times2})](\psi_Z[\omega^\omega](\omega^{\omega\times2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,0,0)=\psi(\lambda\alpha.(\alpha\times\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)=\psi(\lambda\alpha.(\alpha\times\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times2})+\psi_Z[\omega^\omega](\omega^{\omega+1}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)=\psi(\lambda\alpha.(\alpha\times\lambda\alpha.(\alpha\times\omega)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times2})\times2+\psi_Z[\omega^\omega](\omega^{\omega+1}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)=\psi(\lambda\alpha.(\alpha\times\lambda\alpha.(\alpha\times\lambda\alpha.(\alpha\times\omega)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\alpha^2+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\zeta_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\alpha^2+\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2+\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega)](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega,\omega^{\omega+1}](\psi_Z[\omega^\omega](\omega^\omega)))\times\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,1,1)(6,2,0)(7,2,0)(8,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega+1})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega+2})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(5,2,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\omega^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega+3})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(5,2,0)(5,2,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\omega^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,0,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,1,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\lambda\alpha.(\alpha^2)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))\times2+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))\times2+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2+\alpha\times\lambda\alpha.(\alpha^2+\alpha\times\lambda\alpha.(\alpha^2)-\Pi_0)-\Pi_0)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2}))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2})))\times\omega](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega,\omega^{\omega\times2+1}](\psi_Z[\omega^\omega](\omega^{\omega\times2})))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(5,2,0)(6,1,0)(5,1,1)(6,2,0)(7,2,0)(8,1,0)(7,2,0)(8,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^2\times3)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times2+1}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)=\psi(\lambda\alpha.(\alpha^2\times\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times2+2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha^2\times\omega^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times2+3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(3,2,0)(3,2,0)=\psi(\lambda\alpha.(\alpha^2\times\omega^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times3})](\psi_Z[\omega^\omega](\omega^{\omega\times3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(4,0,0)=\psi(\lambda\alpha.(\alpha^2\times\omega^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega\times3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)=\psi(\lambda\alpha.(\alpha^2\times\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times3})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega\times3})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times4})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega\times4})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^4)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})](\psi_Z[\omega^\omega](\omega^{\omega^2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,0,0)=\psi(\lambda\alpha.(\alpha^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega^2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)=\psi(\lambda\alpha.(\alpha^\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2})+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\lambda\alpha.(\alpha^2)-\Pi_0})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})\times2+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2})\times2+\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\lambda\alpha.(\alpha^{\lambda\alpha.(\alpha^2)-\Pi_0})-\Pi_0})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2+\omega})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2+\omega})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha+1})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2+\omega\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2+\omega\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(3,2,0)(4,1,0)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha+2})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2\times2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(3,2,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha\times2})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2\times3})\times\omega](\varphi(\omega^2\times3,0)\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(3,2,0)(4,1,0)(4,1,0)(3,2,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha\times3})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^3})](\psi_Z[\omega^\omega](\omega^{\omega^3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha\times\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega^3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,1,0)=\psi(\lambda\alpha.(\alpha^{\alpha\times\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^3})+\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^3})+\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha\times\lambda\alpha.(\alpha^\alpha)-\Pi_0})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^3})\times2+\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^3})\times2+\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,1,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha\times\lambda\alpha.(\alpha^{\lambda\alpha.(\alpha^\alpha)-\Pi_0})-\Pi_0})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^3})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^3})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha^2})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^4})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^4})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(4,1,0)(4,1,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha^3})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^{\omega}})](\psi_Z[\omega^\omega](\omega^{\omega^{\omega}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha^\omega})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega^{\omega}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,1,0)=\psi(\lambda\alpha.(\alpha^{\alpha^\Omega})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^{\omega}})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^{\omega}})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha^\alpha})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^{\omega^\omega}})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^{\omega^\omega}})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,1,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\alpha^{\alpha^{\alpha^\alpha}})-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\omega^\omega](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\omega^\omega](\zeta_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,0)(6,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\Omega_{\alpha+1}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\Omega_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z(\varepsilon_0^\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,2,1)(7,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\Omega_{\Omega_{\alpha+1}}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,2,1)(7,2,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(I_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0^2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,2,1)(7,2,1)(7,2,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(M_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0^3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,2,1)(7,2,1)(7,2,1)(7,2,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(N_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,2,1)(7,2,1)(8,2,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(K_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'+1)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\varepsilon_1](\zeta_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'+\omega)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0),\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^\omega)](\psi_Z[\omega^\omega](\omega^\omega))\times\omega](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^\omega)](\psi_Z[\omega^\omega](\omega^\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,1,0)(2,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'+\alpha)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^\omega)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'+\Omega_{\alpha+1})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0),\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^\omega)\times\omega](\psi_Z[\omega^\omega](\omega^\omega)\times\omega)](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^\omega)\times\omega](\psi_Z[\omega^\omega](\omega^\omega)\times\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(6,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'\times2)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0),\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega)](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega\times2})\times\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(7,3,0)(8,2,0)(6,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'^2)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0),\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})](\psi_Z[\omega^\omega](\omega^{\omega^2}))](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})](\psi_Z[\omega^\omega](\omega^{\omega^2})))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(8,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'^\omega)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0),\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega)](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^2})\times\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(8,2,0)(6,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'^{\alpha'})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0),\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^\omega})\times\omega](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^\omega})\times\omega)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^\omega})\times\omega](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^\omega})\times\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(9,2,0)(6,0,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\alpha'^{\alpha'^{\alpha'}})-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\omega^\omega](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(9,3,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\psi_{\Omega_{\alpha'+1}}(0))-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\varepsilon_0)](\psi_Z[\omega^\omega](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,0)(5,2,1)(6,3,0)(7,3,0)(8,2,0)(9,3,1)(10,4,0)(11,4,0)(12,3,0)(13,4,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+1}}(\lambda\alpha'.(\psi_{\Omega_{\alpha'+1}}(\lambda\alpha<nowiki>''</nowiki>.(\psi_{\Omega_{\alpha<nowiki>''</nowiki>+1}}(0))-\Pi_0))-\Pi_0))-\Pi_0)\\&\large\color{red}{\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\varepsilon_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1})-\Pi_0)=\rm APO}\end{align} \begin{align}s\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,1,1)(4,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}+1)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\zeta_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,1,1)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}+\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega](\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\psi_Z[\omega^\omega](\omega^\omega))\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,1,1)(4,2,0)(5,2,0)(6,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}+\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\psi_Z[\omega^\omega](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,1,1)(4,2,0)(5,2,0)(6,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1}\times2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\psi_Z[\omega^\omega,\omega^{\varepsilon_0+1}](\psi_Z[\omega^\omega](\varepsilon_0))))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,1,1)(4,2,0)(5,2,0)(6,1,1)(5,1,1)(6,2,0)(7,2,0)(8,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1}\times3)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\varepsilon_0+1}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}\times\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\varepsilon_0+\omega})\times\omega](\psi_Z[\omega^\omega](\omega^{\varepsilon_0+\omega})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,2,0)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}\times\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\varepsilon_0\times2})](\psi_Z[\omega^\omega](\omega^{\varepsilon_0\times2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,2,0)(4,1,0)(5,2,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}\times\psi_{\Omega_{\alpha+1}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\varepsilon_0\times2}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,2,0)(4,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^2)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\varepsilon_0\times3}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(3,2,0)(4,1,1)(3,2,0)(4,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^3)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0+1}})](\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0+1}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(4,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^\omega)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0+1}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(4,1,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^\Omega)-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0+1}})\times\omega](\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0+1}})\times\omega)=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(4,1,0)(2,0,0)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^\alpha)-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega^{\varepsilon_0\times2}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(4,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^{\Omega_{\alpha+1}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\omega^{\omega^{\omega^{\varepsilon_0\times2}}}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(5,1,1)=\psi(\lambda\alpha.(\Omega_{\alpha+1}^{\Omega_{\alpha+1}^{\Omega_{\alpha+1}}})-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(5,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(0))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\zeta_0))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(5,2,0)(6,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\psi_Z[\omega^\omega](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(5,2,0)(6,2,0)(7,1,1)(8,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}^{\psi_{\Omega_{\alpha+2}}(0)}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\psi_Z[\omega^\omega](\zeta_0)))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(5,2,0)(6,2,0)(7,1,1)(8,2,0)(9,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}^{\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2})}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z[\omega^\omega](\psi_Z[\omega^\omega](\psi_Z[\omega^\omega](\zeta_0))))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,1,1)(5,2,0)(6,2,0)(7,1,1)(8,2,0)(9,2,0)(10,1,1)(11,2,0)(12,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}^{\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}^{\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2})})}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z(\omega^\omega))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}^{\Omega_{\alpha+2}}))-\Pi_0)\\&\psi_Z[\varepsilon_1](\psi_Z(\omega^{\omega^\omega}))=(0,0,0)(1,1,1)(2,2,0)(3,2,0)(4,2,0)(5,2,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+2}^{\Omega_{\alpha+2}^{\Omega_{\alpha+2}}}))-\Pi_0)\\&\large\color{green}{\psi_Z[\varepsilon_1,\rm BHO](BHO)=(0,0,0)(1,1,1)(2,2,0)(3,3,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\psi_{\Omega_{\alpha+3}}(0)))-\Pi_0)}\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)](\psi_Z[\varepsilon_0](\psi_Z[\varepsilon_0](\varepsilon_0)))=(0,0,0)(1,1,1)(2,2,0)(3,3,0)(4,4,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\psi_{\Omega_{\alpha+3}}(\psi_{\Omega_{\alpha+4}}(0))))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)](\psi_Z(\varepsilon_0))=(0,0,0)(1,1,1)(2,2,0)(3,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\Omega_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)](\psi_Z(\varepsilon_0^{\varepsilon_0}))=(0,0,0)(1,1,1)(2,2,0)(3,3,1)(4,3,1)(5,3,1)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(I_{\alpha+\omega}))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)](\psi_Z[\varepsilon_1](\varepsilon_1))=(0,0,0)(1,1,1)(2,2,0)(3,3,1)(4,4,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\lambda\alpha'.(\alpha'+1)-\Pi_0))-\Pi_0)\\&\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)](\psi_Z[\varepsilon_1,\psi_Z[\varepsilon_0](\varepsilon_0)](\psi_Z[\varepsilon_1](\varepsilon_1)))=(0,0,0)(1,1,1)(2,2,0)(3,3,1)(4,4,0)(5,5,1)(6,6,0)=\psi(\lambda\alpha.(\psi_{\Omega_{\alpha+2}}(\lambda\alpha'.(\psi_{\Omega_{\alpha'+2}}(\lambda\alpha<nowiki>''</nowiki>.(\alpha<nowiki>''</nowiki>+1)-\Pi_0))-\Pi_0))-\Pi_0)\\&\LARGE\color{purple}{\psi_Z[\varepsilon_1](\rm BHO)=(0,0,0)(1,1,1)(2,2,1)=\psi(\lambda\alpha.(\Omega_{\alpha+2})-\Pi_0)=BGO}\end{align} [[分类:分析]]
返回
fffz分析Part8
。
查看“︁fffz分析Part8”︁的源代码
来自Googology Wiki